Skip to main content
Log in

The slip agents oleamide and erucamide reduce biofouling by marine benthic organisms (diatoms, biofilms and abalones)

  • Original article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Primary fatty acid amides are commonly found in grasses, microalgae, and animal. Oleamide and erucamide are fatty acid amide derivatives of oleic and brassidic acids, respectively. They are the most frequently used slip agents in industrial applications. We evaluated their potential application as antifouling coatings on submerged surfaces. The deterrent properties of parafilm wax plates containing oleamide and erucamide against the surface recruitment of diatoms and biofilms and the attachment strength of abalones were assessed. Both amides were effective, but oleamide had 1.4-2.5-fold greater deterrent effects against all three groups of foulers. The amides produced slippery surfaces to which the biofoulers attached weakly. The benthic organisms were readily dislodged by water motion. Thus, oleamide has potential as an ingredient in antifoulant coating materials. We also developed a rapid abalone detachment assay that can be used to test the efficacy of antifouling agents against slow-growing members of the macrobenthos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yebra, D. M., Kiil, S. & Dam-Johansen, K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50, 75–104 (2004).

    Article  CAS  Google Scholar 

  2. Hall, L. W. & Pinkney, A. E. Acute and sublethal affects of organotin compounds on aquatic biota: An interpretative literature evaluation. CRC Crit. Rev. Toxicol. 14, 159–209 (1985).

    Article  Google Scholar 

  3. Fletcher, L. R. & Callow, E. M. The settlement, attachment and establishment of marine algal spores. Brit. Phycol. J. 27, 303–329 (1992).

    Article  Google Scholar 

  4. Chaudhury, K. M., Finlay, J., Chung, Y. J., Callow, E. M. & Callow, A. J. The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn Enteromorpha linza) from poly dimethylsiloxane (PDMS) model networks. Biofouling 21, 41–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Cho, J. Y. Antifouling activity of giffinisterone B and oleamide isolated from a filamentous bacterium Leucothrix mucor culture against Ulva pertusa. Kor. J. Fish. Aquat. Sci. 45, 30–34 (2012).

    CAS  Google Scholar 

  6. Kang, J.-Y. et al. Antifouling effects of the periostracum on algal spore settlement in the mussel Mytilus edulis. Fish. Aquat. Sci. 19, 34–39 (2016).

    Article  Google Scholar 

  7. Garrido-López, Á., Esquiu, V. & Tena, M. T. Determination of oleamide and erucamide in polyethylene films by pressurised fluid extraction and gas chromatography. J. Chromatogr. A 1124, 51–56 (2006).

    Article  PubMed  Google Scholar 

  8. Mansha, M., Gauthier, C., Gerard, P. & Schirrer, R. The effect of plasticization by fatty acid amides on the scratch resistance of PMMA. Wear 271, 671–679 (2011).

    Article  CAS  Google Scholar 

  9. de Zoete, M. C., Kock-van Dalen, A. C., van Rantwijk, F. & Sheldon, R. A. Lipase-catalysed ammoniolysis of lipids. A facile synthesis of fatty acid amides. J. Mol. Catalysis B: Enzymatic 1, 109–113 (1996).

    Google Scholar 

  10. Fowler, C. J., Jonsson, K.-O. & Tiger, G. Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide. Biochem. Pharmacol. 62, 517–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Dembitsky, V. M., Shkrob, I. & Rozentsvet, O. A. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum. Phytochemistry 54, 965–967 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Cravatt, F. B. et al. Chemical characterization of a family of brain lipids that induce sleep. Science 268, 1506–1509 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Visek, K. E. in Surfactant Science Series, Vol. 34 (ed Richmond, J. M.) 1-50 (Marcel Dekker, New York, 1990).

  14. Huitrón-Reséndiz, S., Gombart, L., Cravatt, B. F. & Henriksen, S. J. Effect of oleamide on sleep and its relationship to blood pressure, body temperature, and locomotor activity in rats. Exp. Neurol. 172, 235–243 (2001).

    Article  PubMed  Google Scholar 

  15. Ge, L. et al. Differential proteomic analysis of the antidepressive effects of oleamide in a rat chronic mild stress model of depression. Pharmacol. Biochem. Be. 131, 77–86 (2015).

    Article  CAS  Google Scholar 

  16. Hopps, J. J., Dunn, W. R. & Randall, M. D. Enhanced vasorelaxant effects of the endocannabinoid-like mediator, oleamide, in hypertension. Eur. J. Pharmacol. 684, 102–107 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Oh, Y. T. et al. Oleamide suppresses lipopolysaccharideinduced expression of iNOS and COX-2 through inhibition of NF-kB activation in BV2 murine microglial cells. Neurosci. Lett. 474, 148–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Wei, X. Y., Yang, J. Y., Dong, Y. X. & Wu, C. F. Anxiolytic-like effects of oleamide in group-housed and socially isolated mice. Prog. Neuro-Psychoph. 31, 1189–1195 (2007).

    Article  CAS  Google Scholar 

  19. Dougalis, A., Lees, G. & Ganellin, C. R. The sleep lipid oleamide may represent an endogenous anticonvulsant: an in vitro comparative study in the 4-aminopyridine rat brain-slice model. Neuropharmacology 46, 541–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Mendelson, W. B. & Basile, A. S. The hypnotic actions of the fatty acid amide, oleamide. Neuropsychopharmacology 25, S36–S39 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, J.-Y., Abe, K., Xu, N.-J., Matsuki, N. & Wu, C.-F. Oleamide attenuates apoptotic death in cultured rat cerebellar granule neurons. Neurosci. Lett. 328, 165–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Wakamatsu, K., Masaki, T., Itoh, F., Kondo, K. & Sudo, K. Isolation of fatty acid amide as an angiogenic principle from bovine mesentery. Biochem. Biophys. Res. Commun. 168, 423–429 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Hamberger, A. & Stenhagen, G. Erucamide as a modulator of water balance: new function of a fatty acid amide. Neurochem. Res. 28, 177–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Madaeni, S. S., Falsafi, M. & Ghaemi, N. A novel method for preparation of low-fouling membranes: Surface coating by extracted wax from leafy cabbage. Desalination 283, 148–155 (2011).

    Article  CAS  Google Scholar 

  25. Hoipkemeier-Wilson, L. et al. Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha). Biofouling 20, 53–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Bowen, J. et al. The influence of surface lubricity on the adhesion of Navicula perminuta and Ulva linza to alkanethiol self-assembled monolayers. J. Roy. Soc. Interface 4, 473–477 (2007).

    Article  CAS  Google Scholar 

  27. Lin, A. Y. M., Brunner, R., Chen, P. Y., Talke, F. E. & Meyers, M. A. Underwater adhesion of abalone: The role of van der Waals and capillary forces. Acta Mater. 57, 4178–4185 (2009).

    Article  CAS  Google Scholar 

  28. Bertin, M. J., Zimba, P. V., Beauchesne, K. R., Huncik, K. M. & Moeller, P. D. R. Identification of toxic fatty acid amides isolated from the harmful alga Prymnesium parvum carter. Harmful Algae 20, 111–116 (2012).

    Article  CAS  Google Scholar 

  29. Shao, J. et al. Growth inhibition and possible mechanism of oleamide against the toxin-producing cyanobacterium Microcystis aeruginosa NIES-843. Ecotoxicology 25, 225–233 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Greene, G. W. et al. Lubricin: A versatile, biological anti-adhesive with properties comparable to polyethylene glycol. Biomaterials 53, 127–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Heo, J. et al. Improved performance of protected catecholic polysiloxanes for bioinspired wet adhesion to surface oxides. J. Am. Chem. Soc. 134, 20139–20145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, H., Scherer, N. F. & Messersmith, P. B. Singlemolecule mechanics of mussel adhesion. Proc. Nat. Acad. Sci., USA 103, 12999–13003 (2006).

    Article  CAS  Google Scholar 

  33. Guillard, R. R. & Ryther, H. J. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).

    Article  CAS  PubMed  Google Scholar 

  34. Subramanyam, E., Mohandoss, S. & Shin, W. H. Synthesis, characterization, and evaluation of antifouling polymers of 4-acryloyloxybenzaldehyde with methyl methacrylate. J. Appl. Poly. Sci. 112, 2741–2749 (2009).

    Article  CAS  Google Scholar 

  35. Provasoli L. in Cultures and Collections of Algae (eds Watanabe, A. & Hattori, A.) 63–79 (The Japanese Society of Plant Physiologists, Tokyo, 1968).

  36. Kochert G. in Handbook of Phycological Methods, Vol. 2 (eds Hellebust, A. J. & Craigie, S. J.) 95–97 (Cambridge University Press, Cambridge, 1978).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ki Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getachew, P., Getachew, M., Joo, J. et al. The slip agents oleamide and erucamide reduce biofouling by marine benthic organisms (diatoms, biofilms and abalones). Toxicol. Environ. Health Sci. 8, 341–348 (2016). https://doi.org/10.1007/s13530-016-0295-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-016-0295-8

Keywords

Navigation