Skip to main content

Advertisement

Log in

Diagnostic methods and biomarkers for Alzheimer’s disease

  • Mini review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most frequently occurring and intensively investigated neurodegenerative disorder, which is associated with extracellular senile plaques and intracellular neurofibrillary tangles. In this review, AD related diagnostic strategies and the potential biomarkers of AD will be discussed. Several proteomics methods were developed for disease diagnosis, such as ELISA, MALDI-TOF, SELDI-TOF, and 2 D-electrophoresis. Imaging technologies, such as MRI and PET analyses, are also important, since they could directly show the changes in the brain, associated with dementia progression. MRI technologies might estimate the presence and degree of neurodegeneration by identification and quantification of atrophy. PET could reflect the metabolic changes in the brain by various radioactive molecules (tracers). Along with neuropsycoanalysis of behavioral changes, the progression of dementia can be characterized with biochemical changes in brain metabolisms, in addition to fluctuations in many inflammatory mediators in the cerebral spinal fluid (CSF), blood and in other bodily fluids. These biochemical changes in the brain and other body fluids can be initiated before the appearance of AD symptoms. There is no specific marker for AD along with other dementia, but the combination of different markers may predict the disease progression more accurately. Monitoring the changes in their levels in brain, CSF, blood and body fluids with biomarkers in early disease stages might improve the diagnosis and therapies. Several molecules were established as successful biomarkers for AD diagnosis. Ratio of Abeta42/40 became an important AD marker, which could reflect the disease-associated changes in the blood plasma and CSF. Additional markers were available in blood, such as apolipoprotein E or inflammatory molecules. In CSF, the Abeta42, Tau or phospho-tau could be the most successful biomarker for AD progression. Several new biomarkers and diagnostic approaches were developed for differentiating AD from other forms of dementia. It should be important to predict the AD progression prior to the development of clinical symptoms. Above all, the improvement of above strategies, especially with diverse biomarkers, should support the precise diagnosis of AD, greatly enhancing both AD therapies and preventative measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird, D. T. Genetic Aspects of Alzheimer Disease. Genet. Med. 10, 231–239 (2008).

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Knopman, D. S. et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56, 1143–1153 (2001).

    PubMed  CAS  Google Scholar 

  3. Perl, D. P. Neuropathology of Alzheimer’s disease. Mt. Sinai. J. Med. 77, 32–42 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Zhu, C. W. & Sano, M. Economic considerations in the management of Alzheimer’s disease. Clin. Interv. Aging 1, 143–154 (2006).

    PubMed  PubMed Central  Google Scholar 

  5. Iversen, L. L. The toxicity in vitro of beta-amyloid protein. Biochem. J. 311, 1–16 (1995).

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Monien, B. H., Apostolova, L. G. & Bitan, G. Early diagnostics and therapeutics for Alzheimer’s disease-how early can we get there? Expert. Rev. Neurother. 6, 1293–1306 (2006).

    PubMed  PubMed Central  Google Scholar 

  7. Wolk, D. A. & Klunk, W. Update on amyloid imaging: from healthy aging to Alzheimer’s disease. Curr. Neurol. Neurosci. Rep. 9, 345–352 (2009).

    PubMed  PubMed Central  Google Scholar 

  8. Chertkow, H. Diagnosis and treatment of dementia: Introduction. Introducing a series based on the Third Canadian Consensus Conference on the Diagnosis and Treatment of Dementia. Canadian Medical Association 178, 316–321 (2008).

    Google Scholar 

  9. Hebert, L. E. Scherr, P. A., Bienias, J. L., Bennett, D. A. & Evans, D. A. Alzheimer Disease in the US Population, Prevalence Estimates Using the 2000 Census. Arch Neurol. 60, 1119–1122 (2003).

    PubMed  Google Scholar 

  10. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s and Dement. 6, 158–194 (2010).

    Google Scholar 

  11. Canadian study of health and aging: study methods and prevalence of dementia. CMAJ 150, 899–913 (1994).

    Google Scholar 

  12. Herrmann, N. & Gauthier, S. Diagnosis and treatment of dementia: 6. Management of severe Alzheimer disease. CMAJ 179, 1279–1287 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Suh, G. H. et al. A prospective, double-blind, community-controlled comparison of three doses of galantamine in the treatment of mild to moderate Alzheimer’s disease in a Korean population. J. Korean. Med. Sci. 23, 10–17 (2008).

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Park, H. K. et al. Clinical characteristics of a nationwide hospital-based registry of mild-to-moderate Alzheimer’s disease patients in Korea: a CREDOS (Clinical Research Center for Dementia of South Korea) study. J. Korean Med. Sci. 26, 1219–1222 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. Development of the English version of the Clinical Practice Guideline for Dementia-Part I: Diagnosis & Evaluation was partially supported by the Office of Research Planning and Management, clinical practice guideline support National Evidence-based Healthcare Collaborating Agency, Seoul, Republic of Korea (http://jkma.org/src/SM/jkma-54-861-s002.pdf).

  16. Selkoe, D. J. Alzheimer’s Disease: Genes, Proteins, and Therapy. Physiol. Rev. 81, 741–766 (2001).

    PubMed  CAS  Google Scholar 

  17. National Institute on Aging. Progress Report on Alzheimer’s Disease. Bethesda, MD: National Institute on Aging (1998).

    Google Scholar 

  18. Rice, D. P. et al. Prevalence, costs, and treatment of Alzheimer’s disease and related dementia: a managed care perspective. Am. J. Manag. Care 7, 809–818 (2001).

    PubMed  CAS  Google Scholar 

  19. Zhu, C. W. et al. Longitudinal study of effects of patient characteristics on direct costs in Alzheimer disease. Neurology 67, 998–1005 (2006).

    PubMed  CAS  Google Scholar 

  20. Hogan, D. B. et al. Diagnosis and treatment of dementia: 4. Approach to management of mild to moderate dementia. CMAJ 179, 787–793 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Chertkow, H. et al. Diagnosis and treatment of dementia: 3. Mild cognitive impairment and cognitive impairment without dementia. CMAJ 178, 1273–1285 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. Gauthier, S. et al. Mild cognitive impairment. Lancet 367, 1262–1270 (2006).

    PubMed  Google Scholar 

  23. Dubois, B. & Albert, M. L. Amnestic MCI or prodromal Alzheimer’s disease? Lancet Neurol. 3, 246–248 (2004).

    PubMed  Google Scholar 

  24. Smith, G. Is mild cognitive impairment bridging the gap between normal aging and Alzheimer’s disease? J. Neural. Transm. Suppl. 62, 97–104 (2002).

    PubMed  Google Scholar 

  25. Weimer, D. L. & Sager, M. A. Early identification and treatment of Alzheimer’s disease: Social and fiscal outcomes. Alzheimers Dement. 5, 215–226 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Valcour, V. G., Masaki, K. H., Curb, J. D. & Blanchette, P. L. The Detection of Dementia in the Primary Care Setting. Arch InterMed. 160, 2964–2968 (2000).

    CAS  Google Scholar 

  27. Musicco, M. et al. Predictors of progression of cognitive decline in Alzheimer’s disease: the role of vascular and sociodemographic factors. J. Neurol. 256, 1288–1295 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Spooner, M. A. Is it really Alzheimer’s? Can. Fam. Physician 40, 1141–1145 (1994).

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    PubMed  Google Scholar 

  30. Jagust, W. Mapping Brain β-Amyloid. Curr. Opin. Neurol. 22, 356–361 (2010).

    Google Scholar 

  31. Horn, A. H. & Sticht, H. Amyloid-beta42 oligomer structures from fibrils: a systematic molecular dynamics study. J. Phys. Chem. B. 114, 2219–2226 (2010).

    PubMed  CAS  Google Scholar 

  32. Buchete, N. V., Tycko, R. & Humme, G. Molecular Dynamics Simulations of Alzheimer’s β-Amyloid Protofilaments. J. Mol. Biol. 353, 804–821 (2005).

    PubMed  CAS  Google Scholar 

  33. Serpell, L. C. Alzheimer’s amyloid fibrils: structure and assembly. Biochim. Biophys. Acta. 1502, 16–30 (2000).

    PubMed  CAS  Google Scholar 

  34. Chow, V. W., Mattson, M. P., Wong, P. C. & Gleichmann, M. An Overview of APP Processing Enzymes and Products. Neuromolecular. Med. 12, 1–12 (2009).

    Google Scholar 

  35. Evin, G., Sernee, M. F. & Masters, C. L. Inhibition of gamma-secretase as a therapeutic intervention for Alzheimer’s disease: prospects, limitations and strategies. CNS Drugs 20, 351–372 (2006).

    PubMed  CAS  Google Scholar 

  36. Vassar, R. BACE1: the beta-secretase enzyme in Alzheimer’s disease. J. Mol. Neurosci. 23, 105–114 (2004).

    PubMed  CAS  Google Scholar 

  37. Irizarry, M. C. Biomarkers of Alzheimer Disease in Plasma. NeuroRx. 1, 226–234 (2004).

    PubMed  PubMed Central  Google Scholar 

  38. Blennow, K. CSF biomarkers for mild cognitive impairment. J. Int. Med. 256, 224–234 (2004).

    CAS  Google Scholar 

  39. Feldman, H. H. et al. Diagnosis and treatment of dementia: 2. Diagnosis. CMAJ 178, 825–836 (2008).

    PubMed  PubMed Central  Google Scholar 

  40. Frank, R. A. et al. Biological markers for therapeutic trials in Alzheimer’s disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer’s disease. Biological markers for therapeutic trials in Alzheimer’s disease. Neurobiol. Aging 24, 521–536 (2003).

    PubMed  Google Scholar 

  41. Levey, A., Lah, J., Goldstein, F., Steenland, K. & Bliwise, D. Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer’s disease. Clin Ther. 28, 991–1001 (2006).

    PubMed  Google Scholar 

  42. Jack, C. R. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 9, 119 (2010).

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Patterson, C. et al. Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. CMAJ 178, 548–556 (2008).

    PubMed  PubMed Central  Google Scholar 

  44. Schneider, L. S., Kennedy, R. E. & Cutter, G. R. Requiring an amyloid-beta1-42 biomarker for prodromal Alzheimer’s disease or mild cognitive impairment does not lead to more efficient clinical trials. Alzheimers Dement. 6, 367–377 (2010).

    PubMed  CAS  PubMed Central  Google Scholar 

  45. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. 1998, Consensus report of the Working Group on: Molecular and biochemical markers of Alzheimer’s disease. Neurobiol. Aging 19, 109–116 (1998).

    Google Scholar 

  46. Maarouf, C. L. et al. Proteomic Analysis of Alzheimer’s Disease Cerebrospinal Fluid from Neuropathologically Diagnosed Subjects. Curr. Alzheimer Res. 6, 399–406 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Butterfield, D. A., Boyd-Kimball, D. & Castegna, A. Proteomics in Alzheimer’s disease: insights into potential mechanisms of neurodegeneration. J. Neurochem. 86, 1313–1327 (2003).

    PubMed  CAS  Google Scholar 

  48. Zhang, J., Keene, C. D., Pan, C., Montine, K. S. & Montine, T. J. Proteomics of Human Neurodegenerative Diseases. J. Neuropathol. Exp. Neurol. 67, 923–932 (2008).

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Shi, M., Caudle, W. M. & Zhang, J. Biomarker Discovery in Neurodegenerative Diseases: A Proteomic Approach. Neurobiol. Dis. 35, 157–164 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Zaluzec, E. J., Gage, D. A. & Watson, J. T. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry: Applications in Peptide and Protein Characterization. Protein Expr. Purif. 6, 109–123 (2002).

    Google Scholar 

  51. Mischak, H. et al. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom. Rev. 28, 703–724 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Ries, M. L. et al. MRI characterization of brain structure and function in Mild Cognitiven Impairment: A review. J. Am. Geriatr. Soc. 56, 920–934 (2008).

    PubMed  PubMed Central  Google Scholar 

  53. Mueller, S. G. et al. The Alzheimer’s Disease Neuroimaging Initiative. Neuroimaging Clin. N. Am. 15, 869–877 (2008).

    Google Scholar 

  54. Wahlund, L. O., Julin, P., Johansson, S. E. & Scheltens, P. Visual rating and volumetry of the medial temporal lobe on magnetic resonance imaging indementia: a comparative study. J. Neurol. Neurosurg. Psychiatry 69, 630–635 (2000).

    PubMed  CAS  PubMed Central  Google Scholar 

  55. DeCarli, C. et al. Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Arch. Neurol. 1, 108–115 (2007).

    Google Scholar 

  56. Duara, R. et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 71, 1986–1992 (2008).

    PubMed  CAS  PubMed Central  Google Scholar 

  57. den Heijer, T. et al. A 10-year follow-up of hippocampal volume on magnetic resonancen imaging in early dementia and cognitive decline. Brain 133, 1163–1172 (2010).

    Google Scholar 

  58. Killiany, R. J. et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann. Neurol. 47, 430–439 (2000).

    PubMed  CAS  Google Scholar 

  59. Scahill, R. I., Schott, J. M., Stevens, J. M., Rossor, M. N. & Fox, N. C. Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc. Natl. Acad. Sci. USA 99, 4703–4707 (2002).

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Du, A. T. et al. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 71, 441–447 (2001).

    PubMed  CAS  Google Scholar 

  61. Borthakur, A., Sochor, M., Davatzikos, C., Trojanowski, J. Q. & Clark, C. M. T1rho MRI of Alzheimer’s disease. Neuroimage 41, 1199–1205 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. Haris et al. T (1ρ) MRI in Alzheimer’s disease: detection of pathological changes in medial temporal lobe. J. Neuroimaging 21, 86–90 (2011).

    Google Scholar 

  63. Phelps, M. E. PET: the merging of biology and imaging into molecular imaging. J. Nucl. Med. 41, 661–681 (2000).

    PubMed  CAS  Google Scholar 

  64. Wolk, D. A. & Klunk, W. E. Update on Amyloid Imaging: From Healthy Aging to Alzheimer’s Disease. Curr. Neurol. Neurosci. Rep. 9, 345–352 (2009).

    PubMed  PubMed Central  Google Scholar 

  65. Klunk, W. E. et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 55, 306–319 (2004).

    PubMed  CAS  Google Scholar 

  66. Kudo, Y. et al. 2-(2-[2-Dimethylaminothiazol-5-yl] ethenyl)-6-(2-[fluoro]ethoxy) benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J. Nucl. Med. 48, 553–561 (2007).

    PubMed  CAS  Google Scholar 

  67. Verhoeff, N. P. et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am. J. Geriatr. Psychiatry 12, 584–595 (2004).

    PubMed  Google Scholar 

  68. Shoghi-Jadid, K. et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am. J. Geriatr. Psychiatry 10, 24–35 (2002).

    PubMed  Google Scholar 

  69. Small, G. W. et al. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med. 355, 2652–2663 (2006).

    PubMed  CAS  Google Scholar 

  70. Rowe, C. C. et al. Imaging of amyloid β in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 7, 129–135 (2008).

    PubMed  CAS  Google Scholar 

  71. Alexander, G. E., Chen, K., Pietrini, P., Rapoport, S. I. & Reiman, E. M. Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer’s Disease Treatment Studies. Am. J. Psychiatry 159, 738–745 (2002).

    PubMed  Google Scholar 

  72. Waragai, M. et al. Comparison study of amyloid PET and voxel-based morphometry analysis in mild cognitive impairment and Alzheimer’s disease. J. Neurol. Sci. 285, 100–108 (2004).

    Google Scholar 

  73. Bohnen, N. I., Djang, D. S., Herholz, K., Anzai, Y. & Minoshima, S. Effectiveness and Safety of 18FFDG PET in the Evaluation of Dementia: A Review of the Recent Literature. J. Nucl. Med. 53, 59–71 (2011).

    PubMed  Google Scholar 

  74. Wong, D. F. et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18FAV-45 (florbetapir [corrected] F 18). J. Nucl. Med. 51, 913–920 (2010).

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Nelissen, N. et al. Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J. Nucl. Med. 50, 1251–1259 (2009).

    PubMed  CAS  Google Scholar 

  76. Waring, S. C. & Rosenberg, R. N. Genome-wide association studies in Alzheimer disease. Arch. Neurol. 65, 329–334 (2008).

    PubMed  Google Scholar 

  77. Mann, D. et al. Preferential deposition of amyloid β protein (Aβ) in the form Aβ40 in Alzheimer’s disease is associated with a gene dosage effect of the apolipoprotein E E4 allele. Neurosci. Lett. 221, 81–84 (1997).

    PubMed  CAS  Google Scholar 

  78. Thambisetty, M., Beason-Held, L., An, L. Y., Kraut, M. A. & Resnick, S. M. APOE epsilon4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch. Neurol. 67, 93–98 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 2, 864–870 (1996).

    PubMed  CAS  Google Scholar 

  80. Humpel, C. Editorial to biomarkers of Alzheimers disease and dementia in cerebrospinal fluid and blood. Exp. Gerontol. 45, 1 (2010).

    PubMed  Google Scholar 

  81. Di Luca, M. et al. Abnormal Pattern of Platelet APP Isoforms in Alzheimer Disease and Down Syndrome. Arch. Neurol. 53, 1162–1166 (1996).

    PubMed  Google Scholar 

  82. Holtzman, D. M. et al. Apolipoprotein E isoformdependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 97, 2892–2897 (2000).

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Ye, S. et al. Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: ApoE structure as a potential therapeutic target. Proc. Natl. Acad. Sci. USA 102, 18700–18705 (2005).

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Huang, Y., Weisgraber, K. H., Mucke, L. & Mahley, R. W. Apolipoprotein E: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer’s disease. J. Mol. Neurosci. 23, 189–204 (2004).

    PubMed  CAS  Google Scholar 

  85. Huang, Y. et al. Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. PNAS 98, 8838–8843 (2001).

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Brodbeck, J. et al. Rosiglitazone increases dendritic spine density and rescues spine loss caused by apolipoprotein E4 in primary cortical neurons. PNAS 105, 1343–1346 (2007).

    Google Scholar 

  87. Buttini, M. et al. Expression of Human Apolipoprotein E3 or E4 in the Brains of Apoe-/- Mice: Isoform-Specific Effects on Neurodegeneration. J. Neurosci. 19, 4867–4880 (1999).

    PubMed  CAS  Google Scholar 

  88. Shaftel, S. S., Griffin, W. S. & O’Banion, M. K. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J. Neuroinflammation 5, 7 (2008).

    PubMed  PubMed Central  Google Scholar 

  89. Forlenza, O. V. et al. Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 28, 507–512 (2009).

    PubMed  CAS  Google Scholar 

  90. Licastro, F. et al. Increased plasma levels of interleukin-1, interleukin-6 and α-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain? J. Neuroimmunol. 103, 97–102 (2000).

    PubMed  CAS  Google Scholar 

  91. Ershler, W. B. et al. Interleukin-6 and aging: blood levels and mononuclear cell production increase with advancing age and in vitro production is modifiable by dietary restriction. Lymphokine Cytokine Res. 12, 225–230 (1993).

    PubMed  CAS  Google Scholar 

  92. Ribizzi, G., Fiordoro, S., Barocci, S., Ferrari, E. & Megna, M. Cytokine polymorphisms and Alzheimer disease: possible associations. Neurol. Sci. 31, 321–325 (2010).

    PubMed  CAS  Google Scholar 

  93. Praticò, D. Alzheimer’s disease and oxygen radicals: new insights. Biochem. Pharmacol. 63, 563–567 (2001).

    Google Scholar 

  94. Markesbery, W. R. & Carney, J. M. Oxidative alterations in Alzheimer’s disease. Brain Pathol. 9, 133–146 (1999).

    PubMed  CAS  Google Scholar 

  95. Fusco, D., Colloca, G., Lo Monaco, M. R. and Cesari, M. Effects of antioxidant supplementation on the aging process. Clin. Interv. Aging 2, 377–387 (2007).

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Foy, C. J., Passmore, A. P., Vahidassr, M. D., Young, I. S. & Lawson, J. T. Plasma chain-breaking antioxidants in Alzheimer’s disease, vascular dementia and Parkinson’s disease. QJM 92, 39–45 (1999).

    PubMed  CAS  Google Scholar 

  97. Xiong, H. et al. Cholesterol retention in Alzheimer’s brain is responsible for high β- and γ-secretase activities and Aβ production. Neurobiol. Dis. 29, 422–437 (2008).

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Wolozin, B. A fluid connection: Cholesterol and Aβ. Proc. Natl. Acad. Sci. USA 98, 5371–5373 (2001).

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Hall, K. et al. 2006, Cholesterol, APOE genotype, and Alzheimer disease. Neurology 66, 223–227 (2006).

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Schiele, F. et al. Apolipoprotein E serum concentration and polymorphism in six European countries: the Apo Europe Project. Atherosclerosis 152, 475–488 (2000).

    PubMed  CAS  Google Scholar 

  101. Glushchenko, A. V. & Jacobsen, D. W. Molecular Targeting of Proteins by l-Homocysteine: Mechanistic Implications for Vascular Disease. Antioxid. Redox. Signal 9, 1883–1898 (2007).

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Laukka, E. J., Fratiglioni, L. & Bäckman, L. The influence of vascular disease on cognitive performance in the preclinical and early phases of Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 29, 498–503 (2010).

    PubMed  CAS  Google Scholar 

  103. Stellos, K. et al. Predictive value of platelet activation for the rate of cognitive decline in Alzheimer’s disease patients. J. Cereb. Blood Flow Metab. 30, 1–4 (2010).

    Google Scholar 

  104. Stellos, K., Bigalke, B., Stakos, D., Henkelmann, N. & Gawaz, M. Platelet-bound P-selectin expression in patients with coronary artery disease: impact on clinical presentation and myocardial necrosis, and effect of diabetes mellitus and anti-platelet medication. J. Thromb. Haemost. 8, 205–207 (2010).

    PubMed  CAS  Google Scholar 

  105. Song, F., Poljak, A., Smythe, G. A. & Sachdev, P. Plasma biomarkers for mild cognitive impairment and Alzheimer’s disease, Brain Research Reviews 61, 69–80 (2009).

    PubMed  CAS  Google Scholar 

  106. van Oijen, M., Hofman, A., Soares, H. D., Koudstaal, P. J. & Breteler, M. M. Plasma Abeta (1–40) and Abeta (1–42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol. 5, 655–660 (2006).

    PubMed  Google Scholar 

  107. Solfrizzi, V. et al. 2006, Circulating biomarkers of cognitive decline and dementia. Clin. Chim. Acta 364, 91–112 (2006).

    PubMed  CAS  Google Scholar 

  108. Brys, M. et al. Magnetic Resonance Imaging Improves Cerebrospinal Fluid Biomarkers in the Early Detection of Alzheimer’s Disease. J. Alzheimers Dis. 16, 351–362 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Bjerke, M. et al. Confounding Factors Influencing Amyloid Beta Concentration in Cerebrospinal Fluid. Int. J. Alzheimer Dis. pii: 986310 (2010).

    Google Scholar 

  110. Caballero, J. & Nahata, M. Do statins slow down Alzheimer’s disease? A review. J. Clin. Pharm. Ther. 29, 209–213 (2004).

    CAS  Google Scholar 

  111. Gabelle, A. et al. Correlations between soluble α/β forms of amyloid precursor protein and Aβ38, 40, and 42 in humancerebrospinal fluid. Brain Res. 1357, 175–183 (2010).

    PubMed  CAS  Google Scholar 

  112. Blennow, K. Cerebrospinal Fluid Protein Biomarkers for Alzheimer’s Disease. NeuroRx. 1, 213–225 (2004).

    PubMed  PubMed Central  Google Scholar 

  113. Fukuyama, R. et al. Age-dependent change in the levels of Abeta40 and Abeta42 in cerebrospinal fluid from control subjects, and a decrease in the ratio of Abeta42 to Abeta40 level in cerebrospinal fluid from Alzheimer’s disease patients. Eur. Neurol. 43, 155–160 (2000).

    PubMed  CAS  Google Scholar 

  114. Yerbury, J. J. & Wilson, M. R. Extracellular chaperones modulate the effects of Alzheimer’s patient cerebrospinal fluid on Aβ1-42 toxicity and uptake. Cell Stress Chaperones 15, 115–121 (2009).

    PubMed  PubMed Central  Google Scholar 

  115. Craig-Schapiro, R., Fagan, A. M. & Holtzman, D. M. Biomarkers of Alzheimer’s Disease. Neurobiol. Dis. 35, 128–140 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Lee, J. W. et al. Fibrinogen gamma-A chain precursor in CSF: a candidate biomarker for Alzheimer’s disease. BMC Neurol. 7, 14 (2007).

    PubMed  PubMed Central  Google Scholar 

  117. Jung, S. M. et al. Both plasmaretinol-binding protein and haptoglobin precursor allele 1 in CSF: Candidate biomarkers for the progression of normal to mild cognitive impairment to Alzheimer’s disease. Neurosci. Lett. 436, 153–157 (2008).

    PubMed  CAS  Google Scholar 

  118. Hu, Y. Y. et al. Elevated levels of phosphorylated neurofilament proteins incerebrospinal fluid of Alzheimer disease patients. Neurosci. Lett. 320, 156–160 (2002).

    PubMed  CAS  Google Scholar 

  119. Blennow, K., Davidsson, P., Wallin, A., Gottfries, C. G. & Svennerholm, L. Ubiquitin in cerebrospinal fluid in Alzheimer’s disease and vascular dementia. Int. Psychogeriatr. 6, 13–22 (1994).

    PubMed  CAS  Google Scholar 

  120. Praticò, D. et al. Increased 8, 12-iso-iPF (2α) -VI in Alzheimer’s disease: Correlation of a noninvasive index of lipid peroxidation with disease severity. Ann. Neurol. 48, 809–812 (2000).

    PubMed  Google Scholar 

  121. Skovronsky, D. M., Lee, V. M. Y. & Praticò, D. Amyloid Precursor Protein and Amyloid β Peptide in Human Platelets. J. Biol. Chem. 276, 17036–17043 (2001).

    PubMed  CAS  Google Scholar 

  122. Anoop, A., Singh, P. K., Jacob, R. S. & Maji, S. K. CSF Biomarkers for Alzheimer’s Disease Diagnosis. Int. J. Alzheimers Dis. pii: 606802 (2010).

    Google Scholar 

  123. Stefani, A. et al. CSF biomarkers, impairment of cerebral hemodynamics and degree of cognitive decline in Alzheimer’s and mixed dementia. J. Neurol. Sci. 283, 109–115 (2009).

    PubMed  CAS  Google Scholar 

  124. Fagan, A. M. et al. Cerebrospinal fluid tau and ptau181 increase with cortical amyloid deposition in cognitively normal individuals: Implications for future clinical trials of Alzheimer’s disease. EMBO Mol. Med. 1, 371–380 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Bian, H. et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 70, 1827–1835 (2008).

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Sunderland, T. et al. Cerebrospinal fluid β-amyloid1-42 and tau in control subjects at risk for Alzheimer’s disease: The effect of APOE ε4 allele. Biol. Psychiatry 56, 670–676 (2004).

    PubMed  CAS  Google Scholar 

  127. Azad, N. S. et al. Proteomics in Clinical Trials and Practice. Proteomics 5, 1819–1829 (2006).

    CAS  Google Scholar 

  128. Fukumoto, H. et al. High-molecular-weight beta-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J. 24, 2716–2726 (2010).

    PubMed  CAS  Google Scholar 

  129. Picone, P. et al. Abeta oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures. Biophys. J. 96, 4200–4211 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Homepage of American Alzheimer’s Disease Neuroimaging Initiative (ADNI) http://www.adni-info.org/index.

  131. Petersen, R. C. Prediction and Prevention (?) of Alzheimer’s Disease. Lancet Neurol. 9, 4–5 (2010).

    PubMed  PubMed Central  Google Scholar 

  132. Cheng, I. H. et al. Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282, 23818–23128 (2007).

    PubMed  CAS  Google Scholar 

  133. Lesné, S., Kotilinek, L. & Ashe, K. H. Plaque-bearing mice with reduced levels of oligomeric amyloid-beta assemblies have intact memory function. Neuroscience 151, 745–749 (2007).

    PubMed  PubMed Central  Google Scholar 

  134. Hashimoto, T., Adams, K. W., Fan, Z., McLean, P. J. & Hyman, B. T. Characterization of oligomer formation of amyloid-beta peptide using a split-luciferase complementation assay. J. Biol. Chem. 286, 27081–27091 (2011).

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Olsson, A. et al. Simultaneous measurement of betaamyloid (1-42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin. Chem. 51, 336–345 (2005).

    PubMed  CAS  Google Scholar 

  136. Bao, F. et al. Different β-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol. Aging 33, 825.e1-1 (2011).

    PubMed  Google Scholar 

  137. Hu, Y. et al. A strategy for designing a peptide probe for detection of β-amyloid oligomers. Chembiochem 11, 2409–2418 (2010).

    PubMed  CAS  Google Scholar 

  138. Ojha, J., Masilamoni, G., Dunlap, D., Udoff, R. A. & Cashikar, A. G. Sequestration of toxic oligomers by HspB1 as a cytoprotective mechanism. Mol. Cell Biol. 31, 3146–3157 (2011).

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Sayer, R., Law, E., Connelly, P. J. & Breen, K. C. Association of a salivary acetylcholinesterase with Alzheimer’s disease and response to cholinesterase inhibitors. Clin. Biochem. 37, 98–104 (2004).

    PubMed  CAS  Google Scholar 

  140. Bermejo-Pareja, F., Antequera, D., Vargas, T., Molina, J. A. & Carro, E. Saliva levels of Abeta1-42 as potential biomarker of Alzheimer’s disease: a pilot study. BMC Neurol. 10, 108 (2010).

    PubMed  PubMed Central  Google Scholar 

  141. Homepage of Oasis Diagnostic: http://www.4saliva.com.

  142. Perrin, R. J., Fagan, A. M. & Holtzman, D. M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461, 916–922 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Soo A. An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagyinszky, E., Youn, Y.C., An, S.S.A. et al. Diagnostic methods and biomarkers for Alzheimer’s disease. Toxicol. Environ. Health Sci. 6, 133–147 (2014). https://doi.org/10.1007/s13530-014-0198-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-014-0198-5

Keywords

Navigation