Skip to main content

Advertisement

Log in

Impacts of a 12-week aerobic, resistance, and combined exercise training on serum FAM19A5, glucose homeostasis, and novel cardiovascular risk factors among adults with obesity

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Objective

To determine the impacts of 12 weeks of aerobic, resistance, or combined training on FAM19A5, glucose homeostasis, body composition, and physical performance in obese men.

Methods

Fifty-eight obese men [age = 49 ± 6 years; body mass index (BMI) = 29 ± 2 kg m−2] were randomly assigned to aerobic training (n = 14), resistance training (n = 15), combined training (n = 15), and control (n = 14) groups. Interventions were three sessions per week for 12 weeks.

Results

FAM19A5 levels remained unaltered in all three intervention groups. However, insulin concentrations, triglyceride, HOMA-IR, VAI, TyG, and fat% declined in all three interventions, whereas VO2max increased. In addition, glucose levels, LAP, body weight, and BMI were reduced in aerobic and combined groups, while systolic blood pressure was reduced in resistance and combined programs. We also observed a significant reduction in low-density lipoprotein following only combined exercises and a significant increase in high-density lipoprotein after only aerobic exercises. There was a significant negative relationship between serum levels of FAM19A5 and HOMA-IR.

Conclusion

This is the first report to assess the influence of exercise interventions on circulating FAM19A5 levels in obese adults. Although FAM19A5 levels remained unchanged in all three interventions, our work provides information to support that aerobic, resistance, and combined regimens can be effective in improving HOMA-IR, triglyceride, systolic blood pressure, BMI, and aerobic performance in obese men. Additional studies with large sample size should be conducted to further clarify the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Some data may not be made available because of privacy or ethical restrictions.

References

  1. World Health Organization. Obesity and overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed on 25 January 2022.

  2. Abdelaal M, le Roux CW, Docherty NG. Morbidity and mortality associated with obesity. Ann Transl Med. 2017;5(7):161.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nakamura K, Fuster JJ, Walsh K. Adipokines: a link between obesity and cardiovascular disease. J Cardiol. 2014;63(4):250–9.

    Article  PubMed  Google Scholar 

  4. Matsuzawa Y. Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2006;3(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Chen D, Zhang Y, Wang P, Zheng C, et al. Novel adipokine, FAM19A5, inhibits neointima formation after injury through sphingosine-1-phosphate receptor 2. Circulation. 2018;138(1):48–63.

    Article  CAS  PubMed  Google Scholar 

  6. Lee Y-B, Hwang H-J, Kim JA, Hwang SY, Roh E, et al. Association of serum FAM19A5 with metabolic and vascular risk factors in human subjects with or without type 2 diabetes. Diab Vasc Dis Res. 2019;16(6):530–8.

    Article  CAS  PubMed  Google Scholar 

  7. Ali Yari F, Shabani P, Karami S, Sarmadi N, Poustchi H, et al. Circulating levels of FAM19A5 are inversely associated with subclinical atherosclerosis in non-alcoholic fatty liver disease. BMC Endocr Disord. 2021;21(1):153.

    Article  Google Scholar 

  8. Wang W, Li T, Wang X, Yuan W, Cheng Y, et al. FAM19A4 is a novel cytokine ligand of formyl peptide receptor 1 (FPR1) and is able to promote the migration and phagocytosis of macrophages. Cell Mol Immunol. 2015;12(5):615–24.

    Article  PubMed  Google Scholar 

  9. Chen L, Chen R, Wang H, Liang F. Mechanisms linking inflammation to insulin resistance. Int J Endocrinol. 2015;2015:508409.

  10. Cefalu WT. Inflammation, insulin resistance, and type 2 diabetes: back to the future? Diabetes. 2009;58(2):307–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khan UI, Wang D, Sowers MR, Mancuso P, Everson-Rose SA, et al. Race–ethnic differences in adipokine levels: the Study of Women’s Health Across the Nation (SWAN). Metabolism. 2012;61(9):1261–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hosseinpanah F, Barzin M, Mirbolouk M, Abtahi H, Cheraghi L, et al. Lipid accumulation product and incident cardiovascular events in a normal weight population: Tehran Lipid and Glucose Study. Eur J Prev Cardiol. 2016;23(2):187–93.

    Article  PubMed  Google Scholar 

  13. Han L, Fu K-L, Zhao J, Wang Z-H, Tang M-X, et al. Visceral adiposity index score indicated the severity of coronary heart disease in Chinese adults. Diabetol Metab Syndr. 2014;6(1):1–6.

    Article  Google Scholar 

  14. Lee EY, Yang HK, Lee J, Kang B, Yang Y, et al. Triglyceride glucose index, a marker of insulin resistance, is associated with coronary artery stenosis in asymptomatic subjects with type 2 diabetes. Lipids Health Dis. 2016;15(1):1–7.

    Article  Google Scholar 

  15. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, et al. Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920–2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xia C, Li R, Zhang S, Gong L, Ren W, et al. Lipid accumulation product is a powerful index for recognizing insulin resistance in non-diabetic individuals. Eur J Clin Nutr. 2012;66(9):1035–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kim TJ, Kim HJ, Kim YB, Lee JY, Lee HS, et al. Comparison of surrogate markers as measures of uncomplicated insulin resistance in Korean adults. Korean J Fam Med. 2016;37(3):188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McAuley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001;24(3):460–4.

    Article  CAS  PubMed  Google Scholar 

  19. Straczkowski M, Stepien A, Kowalska I, Kinalska I. Comparison of simple indices of insulin sensitivity using the euglycemic hyperinsulinemic clamp technique. Medical science monitor. Int Med J Exp Clin Res. 2004;10(8):CR480-4.

    CAS  Google Scholar 

  20. Semlitsch T, Stigler FL, Jeitler K, Horvath K, Siebenhofer A. Management of overweight and obesity in primary care—a systematic overview of international evidence-based guidelines. Obes Rev. 2019;20(9):1218–30.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, American College of Sports Medicine Position Stand, et al. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.

    Article  PubMed  Google Scholar 

  22. Oppert JM, Bellicha A, van Baak MA, Battista F, Beaulieu K, et al. Exercise training in the management of overweight and obesity in adults: synthesis of the evidence and recommendations from the European Association for the Study of Obesity Physical Activity Working Group. Obes Rev. 2021;22:e13273.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Morze J, Rücker G, Danielewicz A, Przybyłowicz K, Neuenschwander M, et al. Impact of different training modalities on anthropometric outcomes in patients with obesity: a systematic review and network meta-analysis. Obes Rev. 2021;22(7): e13218.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Codella R, Ialacqua M, Terruzzi I, Luzi L. May the force be with you: why resistance training is essential for subjects with type 2 diabetes mellitus without complications. Endocrine. 2018;62(1):14–25.

    Article  CAS  PubMed  Google Scholar 

  25. Shaw BS, Shaw I. Effect of resistance training on cardiorespiratory endurance and coronary artery disease risk: cardiovascular topics. Cardiovasc J S Afr. 2005;16(5):256–9.

    CAS  PubMed  Google Scholar 

  26. Racil G, Zouhal H, Elmontassar W, Abderrahmane AB, De Sousa MV, et al. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl Physiol Nutr Metab. 2016;41(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  27. Mohammad Rahimi GR, Bijeh N, Rashidlamir A. Effects of exercise training on serum preptin, undercarboxylated osteocalcin and high molecular weight adiponectin in adults with metabolic syndrome. Exp Physiol. 2020;105(3):449–59.

    Article  CAS  PubMed  Google Scholar 

  28. Mancia G, Laurent S, Agabiti-Rosei E, Ambrosioni E, Burnier M, et al. Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. Blood Press. 2009;18(6):308–47.

    Article  CAS  PubMed  Google Scholar 

  29. Bruce R. Exercise testing of patients with coronary artery disease. Ann Clin Res. 1971;3:323–32.

    CAS  PubMed  Google Scholar 

  30. Balady GJ. ACSM’s guidelines for exercise testing and prescription. Am College Sports Med. 2000.

  31. Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. J Phys Educ Recreat Dance. 1993;64(1):88–90.

    Article  Google Scholar 

  32. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

    Article  CAS  PubMed  Google Scholar 

  33. Mirmiran P, Bahadoran Z, Azizi F. Lipid accumulation product is associated with insulin resistance, lipid peroxidation, and systemic inflammation in type 2 diabetic patients. Endocrinol Metab (Seoul, Korea). 2014;29(4):443–9.

    Article  Google Scholar 

  34. Wakabayashi I, Daimon T. A strong association between lipid accumulation product and diabetes mellitus in Japanese women and men. J Atheroscler Thromb. 2014;21(3):282–8.

    Article  PubMed  Google Scholar 

  35. Nascimento-Ferreira MV, Rendo-Urteaga T, Vilanova-Campelo RC, Carvalho HB, de Paz Oliveira G, et al. The lipid accumulation product is a powerful tool to predict metabolic syndrome in undiagnosed Brazilian adults. Clin Nutr. 2017;36(6):1693–700.

    Article  CAS  PubMed  Google Scholar 

  36. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  CAS  PubMed  Google Scholar 

  37. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10.

    Article  CAS  PubMed  Google Scholar 

  38. Lopes WA, Oliveira GHD, Locateli JC, Simões CF. TyG in insulin resistance prediction. Jornal de Pediatria. 2020;96(1):132–3.

    Article  PubMed  Google Scholar 

  39. Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3.

    Article  PubMed  Google Scholar 

  40. Zarzour A, Kim HW, Weintraub NL. Understanding obesity-related cardiovascular disease: it’s all about balance. Am Heart Assoc. 2018;138:64–6.

    Google Scholar 

  41. Mohammad Rahimi GR, AlizaeiYousefabadi H, Niyazi A, Mohammad Rahimi N, Alikhajeh Y. Effects of lifestyle intervention on inflammatory markers and waist circumference in overweight/obese adults with metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Biol Res Nurs. 2022;24(1):94–105.

    Article  Google Scholar 

  42. Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, et al. Adipokines: new potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front Physiol. 2020;11: 578966.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tourniaire F, Romier-Crouzet B, Lee JH, Marcotorchino J, Gouranton E, et al. Chemokine expression in inflamed adipose tissue is mainly mediated by NF-κB. PLoS ONE. 2013;8(6): e66515.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Ahn N, Baumeister SE, Amann U, Rathmann W, Peters A, et al. Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes. Sci Rep. 2019;9(1):9693.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  45. Mohammadi A, Bijeh N, Moazzami M, Khodaei K, Rahimi N. Effect of exercise training on spexin level, appetite, lipid accumulation product, visceral adiposity index, and body composition in adults with type 2 diabetes. Biol Res Nurs. 2022;24(2):152–62.

    Article  CAS  PubMed  Google Scholar 

  46. Banitalebi E, Faramarzi M, Ghahfarrokhi MM, Nasiri S. The effects of two exercise modalities on novel cardiovascular risk factors in overweight women with type 2 diabetes: a randomized controlled trial. 2019. https://doi.org/10.21203/rs.2.13913/v1.

  47. Sambataro M, Perseghin G, Lattuada G, Beltramello G, Luzi L, et al. Lipid accumulation in overweight type 2 diabetic subjects: relationships with insulin sensitivity and adipokines. Acta Diabetol. 2013;50(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  48. Idoate F, Ibañez J, Gorostiaga E, García-Unciti M, Martínez-Labari C, et al. Weight-loss diet alone or combined with resistance training induces different regional visceral fat changes in obese women. Int J Obes. 2011;35(5):700–13.

    Article  CAS  Google Scholar 

  49. Misra A, Alappan NK, Vikram NK, Goel K, Gupta N, et al. Effect of supervised progressive resistance-exercise training protocol on insulin sensitivity, glycemia, lipids, and body composition in Asian Indians with type 2 diabetes. Diabetes Care. 2008;31(7):1282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chamroonkiadtikun P, Ananchaisarp T, Wanichanon W. The triglyceride-glucose index, a predictor of type 2 diabetes development: a retrospective cohort study. Prim Care Diabetes. 2020;14(2):161–7.

    Article  PubMed  Google Scholar 

  51. Zheng S, Shi S, Ren X, Han T, Li Y, et al. Triglyceride glucose-waist circumference, a novel and effective predictor of diabetes in first-degree relatives of type 2 diabetes patients: cross-sectional and prospective cohort study. J Transl Med. 2016;14(1):1–10.

    Article  ADS  Google Scholar 

  52. Kim J-H, Lee D-Y, Park SE, Park C-Y, Lee W-Y, et al. Triglyceride glucose index predicts coronary artery calcification better than other indices of insulin resistance in Korean adults: the Kangbuk Samsung Health Study. Precis Futur Med. 2017;1(1):43–51.

    Article  CAS  Google Scholar 

  53. Lee DY, Lee ES, Kim JH, Park SE, Park C-Y, et al. Predictive value of triglyceride glucose index for the risk of incident diabetes: a 4-year retrospective longitudinal study. PLoS ONE. 2016;11(9): e0163465.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tripathy D, Almgren P, Tuomi T, Groop L. Contribution of insulin-stimulated glucose uptake and basal hepatic insulin sensitivity to surrogate measures of insulin sensitivity. Diabetes Care. 2004;27(9):2204–10.

    Article  CAS  PubMed  Google Scholar 

  55. Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014;44(2):211–21.

    Article  PubMed  Google Scholar 

  56. Kelley GA, Kelley KS. Progressive resistance exercise and resting blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2000;35(3):838–43.

    Article  CAS  PubMed  Google Scholar 

  57. Pescatello LS, Miller B, Danias PG, Werner M, Hess M, et al. Dynamic exercise normalizes resting blood pressure in mildly hypertensive premenopausal women. Am Heart J. 1999;138(5):916–21.

    Article  CAS  PubMed  Google Scholar 

  58. Keteyian SJ, Leifer ES, Houston-Miller N, Kraus WE, Brawner CA, et al. Relation between volume of exercise and clinical outcomes in patients with heart failure. J Am Coll Cardiol. 2012;60(19):1899–905.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee D-C, Artero EG, Sui X, Blair SN. Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol. 2010;24(4_suppl):27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sietsema KE, Amato A, Adler SG, Brass EP. Exercise capacity as a predictor of survival among ambulatory patients with end-stage renal disease. Kidney Int. 2004;65(2):719–24.

    Article  PubMed  Google Scholar 

  61. Reusch JE, Bridenstine M, Regensteiner JG. Type 2 diabetes mellitus and exercise impairment. Rev Endocr Metab Disord. 2013;14(1):77–86.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bishop DJ, Granata C, Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochim Biophys Acta (BBA)-Gen Subj. 2014;1840(4):1266–75.

    Article  CAS  Google Scholar 

  63. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588(6):1011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. de Divitiis O, Fazio S, Petitto M, Maddalena G, Contaldo F, et al. Obesity and cardiac function. Circulation. 1981;64(3):477–82.

    Article  PubMed  Google Scholar 

  65. Gaasch WH, Quinones MA, Waisser E, Thiel HG, Alexander JK. Diastolic compliance of the left ventricle in man. Am J Cardiol. 1975;36(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  66. Peterson LR, Waggoner AD, Schechtman KB, Meyer T, Gropler RJ, et al. Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging. J Am Coll Cardiol. 2004;43(8):1399–404.

    Article  PubMed  Google Scholar 

  67. Bonakdari H, Tardif G, Abram F, Pelletier J-P, Martel-Pelletier J. Serum adipokines/related inflammatory factors and ratios as predictors of infrapatellar fat pad volume in osteoarthritis: applying comprehensive machine learning approaches. Sci Rep. 2020;10(1):1–12.

    Article  Google Scholar 

  68. Eglit T, Lember M, Ringmets I, Rajasalu T. Gender differences in serum high-molecular-weight adiponectin levels in metabolic syndrome. Eur J Endocrinol. 2013;168(3):385–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank all of the participants for their time and effort in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Bazgir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent of patient

The institutional review board at the Baqiyatallah University of Medical Sciences (Project No. IR.BMSU.BAQ.REC.1400.023) approved the study research protocol, and written informed consent was provided by all participants.

Trial registration

ClinicalTrials.gov Identifier: IRCT20151026024717N4.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, E., Shamseddini, A., Rahimi, N. et al. Impacts of a 12-week aerobic, resistance, and combined exercise training on serum FAM19A5, glucose homeostasis, and novel cardiovascular risk factors among adults with obesity. Int J Diabetes Dev Ctries (2024). https://doi.org/10.1007/s13410-024-01315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13410-024-01315-7

Keywords

Navigation