Skip to main content
Log in

Dietary supplementation of mustard oil reduces blood glucose levels by triggering insulin receptor signaling pathway

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background

Dietary fatty acids can alter membrane fatty acid composition with the consequent change in the action of various receptors. Incorporation of mustard oil was found to increase insulin secretion, reduce blood glucose levels, and increase the expression of glucose transporter gene 4 (Glut4).

Methods

Three-week-old male Wistar rats were fed with 8% lipid-inclusive isocaloric mash diet. There were non-diabetic control (NDC) and diabetic control (DC) groups fed with ghee, and similarly non-diabetic (NDT) and diabetic treatment (DT) groups fed with mustard oil. Streptozotocin (STZ) was administered intraperitoneally once at a dose rate of 40 mg/kg bodyweight for the induction of diabetes. Blood glucose was estimated using glucometer periodically. Lipids were extracted from mustard oil and in tissue samples, and fatty acid estimation was done using gas chromatography (GC). Gene expression of 84 genes related to diabetes was measured in muscle tissue using Qiagen™ RT2 polymerase chain reaction (PCR) profiler array. The real-time PCR data obtained as threshold cycle (Ct) values were analyzed using Ingenuity Pathway Analysis® (IPA®) software.

Results

After induction of diabetes by day 30, the average glucose levels were above 500 mg/dL in diabetic groups, but for the mustard oil treatment group, they were reduced to 337 mg/dL by the 60 days of treatment. Significantly higher levels of unsaturated fatty acids particularly linoleic acid and linolenic acid were found in mustard oil treatment groups. Insulin receptor signaling was prominent in both ghee-fed normal and mustard oil–fed diabetic treatment groups. Glucose was found to be the major upstream regulator in all the groups except for ghee-fed diabetic control group.

Conclusions

Mustard oil inclusion in the diet reduces blood glucose levels by increased insulin receptor signaling, thereby partially reversing diabetic state in experimentally induced diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu S, Baracos VE, Quinney HA, Clandinin MT, et al. Dietary omega-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma. Biochem J. 1994;299:831–7.

    Article  CAS  Google Scholar 

  2. Ayre KJ, Hulbert AJ. Dietary fatty acid profile influences the composition of skeletal muscle phospholipids in rats. J Nutr. 1996;126:653–62.

    Article  CAS  Google Scholar 

  3. Olomu JM, Baracos VE. Prostaglandin synthesis and fatty acid composition of phospholipids and triglycerides in skeletal muscle of chicks fed combinations of flaxseed oil and animal tallow. Lipids. 1991;26:743–9.

    Article  CAS  Google Scholar 

  4. Mann JI. Nutrition recommendations for the treatment and prevention of type 2 diabetes and the metabolic syndrome: an evidence-based review. Nutr Rev. 2006;64:422–7.

    Article  CAS  Google Scholar 

  5. Kinsell LW, Walker G, Michaels GD, Olson FE, Coelho M, McBride Y, et al. Dietary fats and the diabetic patient. N Engl J Med. 1959;261:431–4.

    Article  CAS  Google Scholar 

  6. Abbott SK, Else PL, Hulbert AJ, et al. Membrane fatty acid composition of rat skeletal muscle is most responsive to the balance of dietary n−3 and n−6 PUFA. Br J Nutr. 2010;103:522–9.

    Article  CAS  Google Scholar 

  7. Ginsberg BH, Brown TJ, Simon I, Spector AA, et al. Effect of the membrane lipid environment on the properties of insulin receptors. Diabetes. 1981;30:773–80.

    Article  CAS  Google Scholar 

  8. Storlien LH, Baur LA, Kriketos AD, Pan DA, Cooney GJ, Jenkins AB, et al. Dietary fats and insulin action. Diabetologia. 1996a;39:621–31.

    Article  CAS  Google Scholar 

  9. Russo LG. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol. 2009;77(6):937–46.

    Article  CAS  Google Scholar 

  10. Gould RJ, Ginsberg BH, Spector AA, et al. Lipid effects on the binding properties of a reconstituted insulin receptor. J Biol Chem. 1982;257(1):477–84.

    Article  CAS  Google Scholar 

  11. Cheema SK, Clandinin MT. Diet- and diabetes-induced change in insulin binding to the nuclear membrane in spontaneously diabetic rats is associated with change in the fatty acid composition of phosphatidylinositol. J Nutr Biochem. 2001;12:213–8. https://doi.org/10.1016/S0955-2863(00)00135-2.

    Article  CAS  PubMed  Google Scholar 

  12. Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV, et al. The regulation between insulin sensitivity and fatty acid composition of skeletal muscle phospholipids. N Engl J Med. 1993;328(4):238–44.

    Article  CAS  Google Scholar 

  13. Storlien LH, Pan DA, Kriketos AD, Connor JO, Caterson ID, Cooney GJ, et al. Skeletal muscle membrane lipids and insulin resistance. Lipids. 1996b;31:S261–5.

    Article  CAS  Google Scholar 

  14. Simonikova P, Wein S, Gasperikova D, Ukropec J, Certik M, Klimes I, et al. Comparison of the extrapancreatic action of γ-linolenic acid and n-3 PUFAs in the fat diet-induced insulin resistance. Endocr Regul. 2002;36:143–9.

    Google Scholar 

  15. Paniagua JA, de la Sacristana AG, Sánchez E, Romero I, Vidal-Puig A, Berral FJ, et al. A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. J Am Coll Nutr. 2007;26(5):434–44.

    Article  CAS  Google Scholar 

  16. Kumar A, Sharma A, Upadhyaya KC, et al. Vegetable oil: nutritional and industrial perspective. Curr Genomics. 2016;17(3):230–40.

    Article  CAS  Google Scholar 

  17. Vassiliou EK, Gonzalez A, Garcia C, Tadros JH, Charakborty G, Toney JH, et al. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-a both in vitro and in vivo systems. Lipids Health Dis. 2009;26:8–25.

    Google Scholar 

  18. Perez-Rosales R, Villanueva-Rodrıguez S, Cosıo-Ramırez R, et al. El aceite de aguacate y sus propiedades nutricionales (Avocado oil and its nutritional properties). e-Gnosis. 2015;3:10.

    Google Scholar 

  19. Rama T, Padmanath K, Valli C, Pandian V, et al. Influence of sunflower oil supplementation in streptozotocin induced diabetic rats. Res J Pharm, Biol Chem Sci. 2018;9(2):510–21.

    CAS  Google Scholar 

  20. Dinesh Kumar B, Mukherjee S, Pradhan R, Mitra A, Chakraborty C. Effects of edible oils in type 2 diabetes mellitus. J Clin Diagn Res. 2009;3:1389–94.

    CAS  Google Scholar 

  21. Hamdan A, Haji Idrus R, Mokhtar MH. Effects of Nigella sativa on type-2 diabetes mellitus: a systematic review. Int J Environ Res Public Health. 2019;16(24):4911. https://doi.org/10.3390/ijerph16244911.

    Article  CAS  PubMed Central  Google Scholar 

  22. Jurado-Ruiz E, Álvarez-Amor L, Varela LM, Berná G, Parra-Camacho MS, María J, et al. Extra virgin olive oil diet intervention improves insulin resistance and islet performance in diet-induced diabetes in mice. Sci Rep. 2019;9:1311.

    Article  Google Scholar 

  23. Rasmussen OW, Thomsen CH, Hansen KW, Winther E, Hermansen K, et al. Favourable effect of olive oil in patients with non-insulin-dependent diabetes. The effect on blood pressure, blood glucose and lipid levels of a high-fat diet rich in monounsaturated fat compared with a carbohydrate-rich diet. Ugeskr Laeger. 1995;157(8):1028–32.

    CAS  PubMed  Google Scholar 

  24. Girón MD, Salto R, Hortelano P, Periago JL, Vargas AM, Suárez MD, et al. Increased diaphragm expression of GLUT4 in control and streptozotocin-diabetic rats by fish oil-supplemented diets. Lipids. 1999;34:801–7. https://doi.org/10.1007/s11745-999-0426-0.

    Article  PubMed  Google Scholar 

  25. Peyron-Caso E, Fluteau-Nadler S, Kabir M, Guerre-Millo M, Quignard-Boulangé A, Slama G, et al. Regulation of glucose transport and transporter 4 (GLUT-4) in muscle and adipocytes of sucrose-fed rats: effects of N-3 poly- and monounsaturated fatty acids. Horm Metab Res. 2002;34:360–6. https://doi.org/10.1055/s-2002-33467.

    Article  CAS  PubMed  Google Scholar 

  26. Sukanya V, Pandiyan V, Vijayarani K, Padmanath K, et al. A study on insulin levels and the expression of Glut4 in streptozotocin (STZ) induced diabetic rats treated with mustard oil diet. Indian J Clin Biochem. 2019. https://doi.org/10.1007/s12291-019-00852-x.

  27. Ikemoto S, Takahashi M, Tsunoda N, Maruyama K, Itakura H, Ezaki O, et al. High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils. Metabolism. 1996;45(12):1539–46.

    Article  CAS  Google Scholar 

  28. Picinato MC, Curi R, Machado UF, Carpinelli AR, et al. Soybean- and olive-oils-enriched diets increase insulin secretion to glucose stimulus in isolated pancreatic rat islets. Physiol Behav. 1998;65:289–94. https://doi.org/10.1016/s0031-9384(98)00157-7.

    Article  CAS  PubMed  Google Scholar 

  29. Maidin NQH, Ahmad N. Protective and antidiabetic effects of virgin coconut oil (Vco) on blood glucose concentrations in alloxan induced diabetic rats. Int J Pharm Pharm Sci. 2013;7(10):57–60.

    Google Scholar 

  30. Poletto AC, Anhe GF, Eichler P, Takahashi HK, Furuya DT, Okamoto MM, et al. Soybean and sunflower oil-induced insulin resistance correlates with impaired GLUT4 protein expression and translocation specifically in white adipose tissue. Cell Biochem Funct. 2010;28(2):114–21.

    Article  CAS  Google Scholar 

  31. Clarke SD. Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br J Nutr. 2000;83(1):S59–66.

    Article  CAS  Google Scholar 

  32. Shepherd PR, Kahn BB. Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999;341(4):248–57.

    Article  CAS  Google Scholar 

  33. Bryant NJ, Govers R, James DE, et al. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267–77.

    Article  CAS  Google Scholar 

  34. Folch J, Lees M, Sloane-Stanley GH, et al. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.

    Article  CAS  Google Scholar 

  35. Pfaffl MW. Mathematical modelling of prefermenters-I. Model development and verification. Nucleic Acids Res. 2001. https://doi.org/10.1016/S0043-1354(98)00516-8.

  36. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  Google Scholar 

  37. Ming Z, Xiao-Yan L, Jing L, Zhi-Gang X, Li C, et al. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res. 2009:1–9.

  38. Kitukale MD, Chandewar AV. An overview on some recent herbs having antidiabetic potential. Res J Pharm, Biol Chem Sci. 2014;5(6):190.

    Google Scholar 

  39. Jayasri MA, Radha A, Mathew TL, et al. A Amylase and a glucosidase inhibitory activity of Costus pictus in the management of diabetes. J Herb Med Toxicol. 2009;3:91–4.

    Google Scholar 

  40. Guyton AC, Hall JE. Textbook of medical physiology. 10th ed. Philadelphia: Saunders WB; 2000. p. 810–8.

    Google Scholar 

  41. Gerling CJ, Mukai K, Chabowski A, Heigenhauser GJF, Holloway GP, Spriet LL, et al. Incorporation of omega-3 fatty acids into human skeletal muscle sarcolemmal and mitochondrial membranes following 12 weeks of fish oil supplementation. Front Physiol. 2019. https://doi.org/10.3389/fphys.2019.00348.

  42. Kumar V, Ahmed D, Gupta PS, Anwar F, Mujeeb M, et al. Anti-diabetic, anti-oxidant and antihyperlipidemic activities of Melastoma malabathricum Linn leaves in streptozotocin induced diabetic rats. BMC Compl Altern Med. 2013;13(222):1–19.

    Google Scholar 

  43. Murray RR, Granner DK, Mayes PA, Rodwell VW, et al. Harper’s biochemistry. 25th ed. Stamford: Appleton and Lange; 1999. p. 610–7.

    Google Scholar 

  44. Campbell PJ, Carlson MG, Hill JO, Nurjhan N, et al. Regulation of free fatty acid metabolism by insulin in humans: role of lipolysis and reesterification. Am J Phys. 1992;263(6):E1063–9.

    CAS  Google Scholar 

  45. Boone DR, Micci MA, Taglialatela IG, Hellmich JL, Weisz HA, Bi M, et al. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury. PLoS ONE. 2015;10(5):0127287.

    Article  Google Scholar 

  46. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409(6821):729–33.

    Article  CAS  Google Scholar 

  47. Carvalho E, Schellhorn SE, Zabolotny JM, Tozzo SME, Peroni OD, Houseknecht KL, et al. GLUT4 overexpression or deficiency in adipocytes of transgenic mice alters the composition of GLUT4 vesicles and the subcellular localization of GLUT4 and insulin-responsive aminopeptidase. J Biol Chem. 2004;279(20):21598–605.

    Article  CAS  Google Scholar 

  48. Charron MJ, Katz EB, Olson AL, et al. GLUT4 gene regulation and manipulation. J Biol Chem. 1999;274(6):3253–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Padmanath.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, P.A., Pandiyan, V., Kumar, T.M.A.S. et al. Dietary supplementation of mustard oil reduces blood glucose levels by triggering insulin receptor signaling pathway. Int J Diabetes Dev Ctries 42, 126–137 (2022). https://doi.org/10.1007/s13410-021-00952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-021-00952-6

Keywords

Navigation