Skip to main content

Advertisement

Log in

Albuminuria increased the risk of left ventricular hypertrophy in type 2 diabetes patients with early renal insufficiency

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Aim

Albuminuria and left ventricular hypertrophy are important predictors of cardiovascular disease. We speculated that albuminuria increases the risk of left ventricular hypertrophy in patients with type 2 diabetes and early renal impairment.

Methods

A total of 330 patients with type 2 diabetes and early renal insufficiency were recruited and classified according to albuminuria level (normal albuminuria, microalbuminuria, and macroalbuminuria). Plasma glucose, glycated hemoglobin (HbA1c), creatinine, uric acid, fasting insulin, albuminuria/urine creatinine ratio, renal function, insulin sensitivity, visceral fat index, body mass index, blood pressure, and left ventricular mass were assessed. The relationship between albuminuria and left ventricular hypertrophy was examined using logistic regression analysis and multiple linear regression.

Results

The risk of left ventricular hypertrophy was higher in the microalbuminuria group (odds ratio [OR] 14.602, 95% confidence interval [CI] 7.050–30.243) and macroalbuminuria group (OR 21.455, 95% CI 8.613–53.443) than in the normal albuminuria group.

Conclusions

Albuminuria increases the risk of left ventricular hypertrophy in patients with type 2 diabetes and early renal insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

To get the data and material of the research, please contact correspondence by e-mail.

References

  1. Campbell PT, Newton CC, Patel AV, Jacobs EJ, Gapstur SM. Diabetes and cause-specific mortality in a prospective cohort of one million U.S. adults. Diabetes Care. 2012;35(9):1835–44. https://doi.org/10.2337/dc12-0002.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mizamtsidi M, Paschou SA, Grapsa J, Vryonidou A. Diabetic cardiomyopathy: a clinical entity or a cluster of molecular heart changes? Eur J Clin Investig. 2016;46(11):947–53. https://doi.org/10.1111/eci.12673.

    Article  Google Scholar 

  3. Dawson A, Morris AD, Struthers AD. The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus. Diabetologia. 2005;48(10):1971–9. https://doi.org/10.1007/s00125-005-1896-y.

    Article  CAS  PubMed  Google Scholar 

  4. Devereux RB. Therapeutic options in minimizing left ventricular hypertrophy. Am Heart J. 2000;139(1 Pt 2):S9–14. https://doi.org/10.1067/mhj.2000.102902.

    Article  CAS  PubMed  Google Scholar 

  5. Arnlov J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D, Benjamin EJ, D'Agostino RB, Vasan RS. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation. 2005;112(7):969–75. https://doi.org/10.1161/circulationaha.105.538132.

    Article  PubMed  Google Scholar 

  6. de Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S, Snapinn S, Cooper ME, Mitch WE, Brenner BM. Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation. 2004;110(8):921–7. https://doi.org/10.1161/01.Cir.0000139860.33974.28.

    Article  PubMed  Google Scholar 

  7. Liu JE, Robbins DC, Palmieri V, Bella JN, Roman MJ, Fabsitz R, Howard BV, Welty TK, Lee ET, Devereux RB. Association of albuminuria with systolic and diastolic left ventricular dysfunction in type 2 diabetes: the Strong Heart Study. J Am Coll Cardiol. 2003;41(11):2022–8. https://doi.org/10.1016/s0735-1097(03)00403-0.

    Article  CAS  PubMed  Google Scholar 

  8. Guerra F, Mancinelli L, Buglioni A, Pierini V, Rappelli A, Dessì-Fulgheri P, Sarzani R. Microalbuminuria and left ventricular mass in overweight and obese hypertensive patients: role of the metabolic syndrome. High Blood Press Cardiovasc Prev. 2011;18(4):195–201. https://doi.org/10.2165/11593650-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  9. Ren Q, Ma C, Wang J, Guo X, Ji L. Albuminuria and other target organ damage in Chinese patients with hypertension and diabetes: a data analysis based on the ATTEND study. J Diabetes Complicat. 2019;107470:107470. https://doi.org/10.1016/j.jdiacomp.2019.107470.

    Article  Google Scholar 

  10. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–70. https://doi.org/10.7326/0003-4819-130-6-199903160-00002.

    Article  CAS  Google Scholar 

  11. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. https://doi.org/10.1007/bf00280883.

    Article  CAS  PubMed  Google Scholar 

  12. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Redon J, Dominiczak A, Narkiewicz K, Nilsson PM, Burnier M, Viigimaa M, Ambrosioni E, Caufield M, Coca A, Olsen MH, Schmieder RE, Tsioufis C, van de Borne P, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Clement DL, Coca A, Gillebert TC, Tendera M, Rosei EA, Ambrosioni E, Anker SD, Bauersachs J, Hitij JB, Caulfield M, De Buyzere M, De Geest S, Derumeaux GA, Erdine S, Farsang C, Funck-Brentano C, Gerc V, Germano G, Gielen S, Haller H, Hoes AW, Jordan J, Kahan T, Komajda M, Lovic D, Mahrholdt H, Olsen MH, Ostergren J, Parati G, Perk J, Polonia J, Popescu BA, Reiner Z, Ryden L, Sirenko Y, Stanton A, Struijker-Boudier H, Tsioufis C, van de Borne P, Vlachopoulos C, Volpe M, Wood DA. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219. https://doi.org/10.1093/eurheartj/eht151.

    Article  Google Scholar 

  13. Nabbaale J, Kibirige D, Ssekasanvu E, Sebatta ES, Kayima J, Lwabi P, Kalyesubula R. Microalbuminuria and left ventricular hypertrophy among newly diagnosed black African hypertensive patients: a cross sectional study from a tertiary hospital in Uganda. BMC Res Notes. 2015;8:198. https://doi.org/10.1186/s13104-015-1156-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu N, Zhao W, Ye K, Li Y, He M, Lu B, Hu R. Albuminuria is associated with left ventricular hypertrophy in patients with early diabetic kidney disease. Int J Endocrinol. 2014;2014:351945–8. https://doi.org/10.1155/2014/351945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nguyen MT, Cosson E, Valensi P, Poignard P, Nitenberg A, Pham I. Transthoracic echocardiographic abnormalities in asymptomatic diabetic patients: association with microalbuminuria and silent coronary artery disease. Diabetes Metab. 2011;37(4):343–50. https://doi.org/10.1016/j.diabet.2010.12.006.

    Article  CAS  PubMed  Google Scholar 

  16. Guerra F, Mancinelli L, Buglioni A, Pierini V, Rappelli A, Dessi-Fulgheri P, Sarzani R. Microalbuminuria and left ventricular mass in overweight and obese hypertensive patients: role of the metabolic syndrome. High Blood Press Cardiovasc Prev. 2011;18(4):195–201. https://doi.org/10.2165/11593650-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  17. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20. https://doi.org/10.1038/414813a.

    Article  CAS  Google Scholar 

  18. Wang CC, Lee AS, Liu SH, Chang KC, Shen MY, Chang CT. Spironolactone ameliorates endothelial dysfunction through inhibition of the AGE/RAGE axis in a chronic renal failure rat model. BMC Nephrol. 2019;20(1):351. https://doi.org/10.1186/s12882-019-1534-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kay AM, Simpson CL, Stewart JA Jr. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res. 2016;2016:6809703–8. https://doi.org/10.1155/2016/6809703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yan D, Luo X, Li Y, Liu W, Deng J, Zheng N, Gao K, Huang Q, Liu J. Effects of advanced glycation end products on calcium handling in cardiomyocytes. Cardiology. 2014;129(2):75–83. https://doi.org/10.1159/000364779.

    Article  CAS  PubMed  Google Scholar 

  21. Jindal A, Garcia-Touza M, Jindal N, Whaley-Connell A, Sowers JR. Diabetic kidney disease and the cardiorenal syndrome: old disease, new perspectives. Endocrinol Metab Clin N Am. 2013;42(4):789–808. https://doi.org/10.1016/j.ecl.2013.06.002.

    Article  Google Scholar 

  22. Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M, Patel A, Cass A, Neal B, Poulter N, Mogensen CE, Cooper M, Marre M, Williams B, Hamet P, Mancia G, Woodward M, Macmahon S, Chalmers J. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol. 2009;20(8):1813–21. https://doi.org/10.1681/asn.2008121270.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102(4):470–9. https://doi.org/10.1161/01.cir.102.4.470.

    Article  CAS  Google Scholar 

  24. Zhang W, Liu CY, Ji LN, Wang JG. Blood pressure and glucose control and the prevalence of albuminuria and left ventricular hypertrophy in patients with hypertension and diabetes. J Clin Hypertens (Greenwich). 2020;22(2):212–20. https://doi.org/10.1111/jch.13793.

    Article  CAS  Google Scholar 

  25. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317(7160):703–13.

    Article  Google Scholar 

  26. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.

    Article  Google Scholar 

  27. Kirkman MS, Mahmud H, Korytkowski MT. intensive blood glucose control and vascular outcomes in patients with type 2 diabetes mellitus. Endocrinol Metab Clin N Am. 2018;47(1):81–96. https://doi.org/10.1016/j.ecl.2017.10.002.

    Article  Google Scholar 

  28. Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, Simons-Morton DG, Basile JN, Corson MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB, Bigger JT, Gerstein HC, Ismail-Beigi F. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85. https://doi.org/10.1056/NEJMoa1001286.

    Article  CAS  PubMed  Google Scholar 

  29. Gerstein HC, Miller ME, Genuth S, Ismail-Beigi F, Buse JB, Goff DC Jr, Probstfield JL, Cushman WC, Ginsberg HN, Bigger JT, Grimm RH Jr, Byington RP, Rosenberg YD, Friedewald WT. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364(9):818–28. https://doi.org/10.1056/NEJMoa1006524.

    Article  CAS  PubMed  Google Scholar 

  30. Nitta K, Iimuro S, Imai E, Matsuo S, Makino H, Akizawa T, Watanabe T, Ohashi Y, Hishida A. Risk factors for increased left ventricular hypertrophy in patients with chronic kidney disease: findings from the CKD-JAC study. Clin Exp Nephrol. 2019;23(1):85–98. https://doi.org/10.1007/s10157-018-1605-z.

    Article  PubMed  Google Scholar 

  31. Wu MZ, Chen Y, Zou Y, Zhen Z, Yu YJ, Liu YX, Yuen M, Ho LM, Siu-Ling Lam K, Tse HF, Yiu KH. Impact of obesity on longitudinal changes to cardiac structure and function in patients with type 2 diabetes mellitus. Eur Heart J Cardiovasc Imaging. 2019;20:816–27. https://doi.org/10.1093/ehjci/jey217.

    Article  PubMed  Google Scholar 

  32. Xu R, Sun S, Huo Y, Yun L, Huang S, Li G, Yan S. Effects of ACEIs versus ARBs on proteinuria or albuminuria in primary hypertension: a meta-analysis of randomized trials. Medicine. 2015;94(39):e1560. https://doi.org/10.1097/md.0000000000001560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greco EV, Russo G, Giandalia A, Viazzi F, Pontremoli R, De Cosmo S. GLP-1 receptor agonists and kidney protection. Medicina (Kaunas). 2019;55(6) https://doi.org/10.3390/medicina55060233.

  34. Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, Pagidipati NJ, Chan JC, Gustavson SM, Iqbal N, Maggioni AP, Ohman P, Poulter NR, Ramachandran A, Zinman B, Hernandez AF, Holman RR. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol. 2018;6(2):105–13. https://doi.org/10.1016/s2213-8587(17)30412-6.

    Article  Google Scholar 

  35. Heuvelman VD, Van Raalte DH, Smits MM. Cardiovascular effects of GLP-1 receptor agonists: from mechanistic studies in humans to clinical outcomes. Cardiovasc Res. 2019;116:916–30. https://doi.org/10.1093/cvr/cvz323.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their deepest appreciation to all colleagues in the Department of Endocrinology at Nanhai People’s Hospital, for their help with data collection and proofreading of the article. We would like to thank Editage (www.editage.cn) for the English language editing.

Author information

Authors and Affiliations

Authors

Contributions

Lei Liu: Conceptualization, methodology, acquisition of data, formal analysis, writing - original draft, writing - review and editing, project administration, and validation

Haizhao Luo: Conceptualization, methodology, acquisition of data, formal analysis, writing - original draft, writing - review and editing, formal analysis, and validation

Yi Shu: Conceptualization, methodology, acquisition of data, formal analysis, data curation, writing - original draft, writing - review and editing, supervision, and validation

Yunyi Liang: Conceptualization, methodology, acquisition of data, formal analysis, writing - original draft, writing - review and editing, and validation

Jielong Tang: Conceptualization, methodology, acquisition of data, formal analysis, writing - original draft, writing - review and editing, and validation

Corresponding author

Correspondence to Yi Shu.

Ethics declarations

Ethics approval

The research was approved by Ethics Committee of the People’s Hospital of Nanhai District, Foshan.

Consent to participate

None declare.

Consent for publication

All of the authors confirm the publication.

Informed consent

Informed consent was obtained from all patients included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Luo, H., Shu, Y. et al. Albuminuria increased the risk of left ventricular hypertrophy in type 2 diabetes patients with early renal insufficiency. Int J Diabetes Dev Ctries 41, 621–627 (2021). https://doi.org/10.1007/s13410-021-00946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-021-00946-4

Keywords

Navigation