Skip to main content

Advertisement

Log in

Metabolomics study on the association between nicotinamide N-methyltransferase gene polymorphisms and type 2 diabetes

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Numerous reports have demonstrated that activities of nicotinamide N-methyltransferase (NNMT) are significantly associated with type 2 diabetes (T2D), and more than 200 single nucleotide polymorphisms (SNPs) have been identified across NNMT gene to date. Although two SNPs (rs694539 and rs1941404) have been found significantly associated with a variety of noninfectious chronic diseases, the association between NNMT gene polymorphisms and T2D has not been reported yet. In this paper, 558 T2D patients and 442 healthy controls were recruited from Chinese Han population. After a case-control study on the association between the two SNPs (rs694539 and rs1941404) and T2D, we found that the rs1941404 is significantly associated with T2D and the CC carriers at this locus are T2D susceptible population. The following metabolomics study showed that the rs1941404 variation is able to affect the metabolic pathways of tryptophan, tyrosine, and arginine, which may partly explain why the rs1941404 variation is significantly associated with T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li JH, Chen W, Zhu XJ, Lin YJ, Qiu LQ, Cai CX, et al. Associations of nicotinamide N-methyltransferase Gene single nucleotide polymorphisms with sport performance and relative maximal oxygen uptake. J Sports Sci. 2017;35(22):2185–90. https://doi.org/10.1080/02640414.2016.1261176.

  2. Li JH, Qiu LQ, Zhu XJ, Cai CX. Influence of exercises using different energy metabolism systems on NNMT expression in different types of skeletal muscle fibers. Sci Sports. 2017;32(1):27–32. https://doi.org/10.1016/j.scispo.2016.06.004.

    Article  Google Scholar 

  3. Liu M, Li L, Chu J, Zhu B, Zhang Q, Yin X, et al. Serum N(1)-Methylnicotinamide is associated with obesity and diabetes in Chinese. J Clin Endocrinol Metab. 2015;100(8):3112–7. https://doi.org/10.1210/jc.2015-1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics. 2007;29(2):99–108. https://doi.org/10.1152/physiolgenomics.00194.2006.

    Article  CAS  PubMed  Google Scholar 

  5. Kraus D, Yang Q, Kong D, Banks AS, Zhang L, Rodgers JT, et al. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature. 2014;508(7495):258–62. https://doi.org/10.1038/nature13198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yaguchi H, Togawa K, Moritani M, Itakura M. Identification of candidate genes in the type 2 diabetes modifier locus using expression QTL. Genomics. 2005;85(5):591–9. https://doi.org/10.1016/j.ygeno.2005.01.006.

    Article  CAS  PubMed  Google Scholar 

  7. Souto JC, Blanco-Vaca F, Soria JM, Buil A, Almasy L, Ordoñez-Llanos J, et al. A genomewide exploration suggests a new candidate gene atchromosome 11q23 as the majorde terminant of plasma homocysteine levels: results from the GAIT project. Am J Hum Genet. 2005;76(6):925–33. https://doi.org/10.1086/430409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Driel LM, Smedts HP, Helbing WA, et al. Eight-fold increased risk for congenital heart defects in children carrying the nicotinamide N-methyltransferase polymorphism and exposed to medicines and low nicotinamide. Eur Heart J. 2008;29(11):1424–31. https://doi.org/10.1093/eurheartj/ehn170.

    Article  CAS  PubMed  Google Scholar 

  9. Giusti B, Saracini C, Bolli P, Magi A, Sestini I, Sticchi E, et al. Genetic analysis of 56 polymorphisms in 17 genes involved in methionine metabolism in patients with abdominal aortic aneurysm. J Med Genet. 2008;45(11):721–30. https://doi.org/10.1136/jmg.2008.057851.

    Article  CAS  PubMed  Google Scholar 

  10. Sazci A, Sazci G, Sazci B, Ergul E, Idrisoglu HA. Nicotinamide-N-Methyltransferase gene rs694539 variant and migraine risk. J Headache Pain. 2016;17(1):93. https://doi.org/10.1186/s10194-016-0688-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sazci A, Ozel MD, Ergul E, Aygun C. Association of nicotinamide-N-methyltransferase gene rs694539 variant with patients with nonalcoholic steatohepatitis. Genet Test Mol Biomarkers. 2013;17(11):849–53. https://doi.org/10.1089/gtmb.2013.0309.

    Article  CAS  PubMed  Google Scholar 

  12. Sazci A, Ozel MD, Ergul E, Onder ME. Association of nicotinamide-N-methyltransferase (NNMT) gene rs694539 variant with bipolar disorder. Gene. 2013;532(2):272–5. https://doi.org/10.1016/j.gene.2013.08.077.

    Article  CAS  PubMed  Google Scholar 

  13. Sazci G, Sazci B, Sazci A, Idrisoglu HA. Association of nicotinamide-N-methyltransferase gene rs694539 variant with epilepsy. Mol Neurobiol. 2016;53(6):4197–200. https://doi.org/10.1007/s12035-015-9364-2.

    Article  CAS  PubMed  Google Scholar 

  14. Bromberg A, Lerer E, Udawela M, Scarr E, Dean B, et al. Nicotinamide-N-methyltransferase (NNMT) in schizophrenia: genetic association and decreased frontal cortex mRNA levels. Int J Neuro Psycho Pharmacol. 2012;15(6):727–37.

    CAS  Google Scholar 

  15. Zhu XJ, Lin YJ, Chen W, Wang YH, Qiu LQ, et al. Physiological study on association between nicotinamide N-methyltransferase gene polymorphisms and hyperlipidemia. Biomed Res Int. 2016;2016:7521942.

    PubMed  PubMed Central  Google Scholar 

  16. Goldberg RB, Mather K. Targeting the consequences of the metabolic syndrome in the Diabetes Prevention Program. Arterioscler Thromb Vasc Biol. 2012;32(9):2077–90. https://doi.org/10.1161/ATVBAHA.111.241893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bromberg A, Levine J, Belmaker R, Agam G. Hyperhomocysteinemia does not affect global DNA methylation and nicotinamide N-methyltransferase expression in mice. J Psychopharmacol. 2011;25(7):976–81. https://doi.org/10.1177/0269881110388328.

    Article  CAS  PubMed  Google Scholar 

  18. Trammell SA, Brenner C. NNMT: a bad actor in fat makes good in liver. Cell Metab. 2015;22(2):200–1. https://doi.org/10.1016/j.cmet.2015.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007;32(1):12–9. https://doi.org/10.1016/j.tibs.2006.11.006.

    Article  CAS  PubMed  Google Scholar 

  20. Williams AC, Hill LJ, Ramsden DB. Nicotinamide, NAD(P)(H), and methyl-group homeostasis evolved and became a determinant of ageing diseases: hypotheses and lessons from pellagra. Curr Gerontol Geriatr Res. 2012;2012:302–5.

    Article  Google Scholar 

  21. Li F, Chong ZZ, Maiese K. Cell Life versus cell longevity: the mysteries surrounding the NAD+ precursor nicotinamide. Curr Med Chem. 2006;13(8):883–95. https://doi.org/10.2174/092986706776361058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–5. https://doi.org/10.1038/nature05616.

    Article  CAS  PubMed  Google Scholar 

  23. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6. https://doi.org/10.1126/science.1142358.

    Article  CAS  Google Scholar 

  24. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–41. https://doi.org/10.1126/science.1142364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39(6):770–5. https://doi.org/10.1038/ng2043.

    Article  CAS  PubMed  Google Scholar 

  26. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genomewide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5. https://doi.org/10.1126/science.1142382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Metaanalysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45. https://doi.org/10.1038/ng.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40(9):1098–102. https://doi.org/10.1038/ng.208.

    Article  CAS  PubMed  Google Scholar 

  29. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092–7. https://doi.org/10.1038/ng.207.

    Article  CAS  PubMed  Google Scholar 

  30. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S, et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462(7275):868–74. https://doi.org/10.1038/nature08625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proença C, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009;41(10):1110–5. https://doi.org/10.1038/ng.443.

    Article  CAS  PubMed  Google Scholar 

  32. Saxena R, Hivert MF, Langenberg C, Tanaka T, Pankow JS, Vollenweider P, et al. Genetic variation in gastric inhibitory polypeptide receptor (GIPR) impacts the glucose and insulin responses to an oral glucose challenge. Nat Genet. 2010;42(2):142–8. https://doi.org/10.1038/ng.521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16. https://doi.org/10.1038/ng.520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cui B, Zhu X, Xu M, et al. A genome-wide association study confirms previously reported loci for type 2 diabetes in Han Chinese. PLoS One. 2011;6(7):e022353.

    Google Scholar 

  35. Li JH, Wang ZH, Zhu XJ, Deng ZH, Cai CX, Qiu LQ, et al. Health effects from swimming training in chlorinated pools and the corresponding metabolic stress pathways. PLoS One. 2015;10(3):e0119241. https://doi.org/10.1371/journal.pone.0119241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–8. https://doi.org/10.1038/sj.cr.7290272.

    Article  CAS  PubMed  Google Scholar 

  37. Matchett WH. Inhibition of tryptophan synthetase by indoleacrylic acid. J Bacteriol. 1972;110(1):146–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Watała C, Kaźmierczak P, Dobaczewski M, Przygodzki T, Bartuś M, Łomnicka M, et al. Anti-diabetic effects of 1-methylnicotinamide (MNA) in streptozocin-induced diabetes in rats. Pharmacol Rep. 2009;61(1):86–98. https://doi.org/10.1016/S1734-1140(09)70010-6.

    Article  PubMed  Google Scholar 

  39. Jongkees BJ, Hommel B, Kühn S, Colzato LS. Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—a review. J Psychiatr Res. 2015;70:50–7. https://doi.org/10.1016/j.jpsychires.2015.08.014.

    Article  PubMed  Google Scholar 

  40. Xia N, Horke S, Habermeier A, Closs EI, Reifenberg G, Gericke A, et al. Uncoupling of endothelial nitric oxide synthase in perivascular adipose tissue of diet-induced obese mice. Arterioscler Thromb Vasc Biol. 2016;36(1):78–85. https://doi.org/10.1161/ATVBAHA.115.306263.

    Article  CAS  PubMed  Google Scholar 

  41. Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, et al. Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral L-arginine supplementation. J Am Coll Cardiol. 2000;35(3):706–13. https://doi.org/10.1016/S0735-1097(99)00602-6.

    Article  CAS  PubMed  Google Scholar 

  42. Kaneto H, Fujii J, Seo HG, Suzuki K, Matsuoka T, Nakamura M, et al. Apoptotic cell death triggered by nitric oxide in pancreatic beta-cells. Diabetes. 1995;44(7):733–8. https://doi.org/10.2337/diab.44.7.733.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC 21365013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Hua Li.

Ethics declarations

The investigation was approved by the local ethics committee at Jiangxi Normal University, and all participants provided the written informed consents. This study conforms to the latest revision of the Declaration of Helsinki.

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JH., Wang, YH., Zhu, XJ. et al. Metabolomics study on the association between nicotinamide N-methyltransferase gene polymorphisms and type 2 diabetes. Int J Diabetes Dev Ctries 38, 409–416 (2018). https://doi.org/10.1007/s13410-017-0601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-017-0601-2

Keywords

Navigation