Skip to main content
Log in

Association of fatty acid profile in plasma lipid fractions with HbA1c in type 2 diabetic patients

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

The aim of this pilot study has been the comparison of fatty acid profiles of diabetic and healthy subjects in order to evaluate the relationship between fatty acid profiles in plasma lipid fractions and glycated haemoglobin (HbA1c) in type 2 diabetes (T2D) patients. The fatty acid composition of fasting plasma lipid subfractions has been analyzed in patients (n = 26) diagnosed with T2D and in corresponding control group (n = 26) of healthy voluntary blood donors. Five subfractions containing phospholipids (PLs), diglycerides (DGs), free fatty acids (FFAs), triglycerides (TGs), and cholesterol esters (CEs) were isolated from plasma samples and separated by thin-layer chromatography. Fatty acid composition of these subfractions was analyzed by GC/FID. Significant changes in fatty acid profiles were found in all lipid fractions from T2D patients in comparison with the control group. HbA1c correlated negatively with delta 9 desaturation (9D) index. Significantly positive correlation of palmitic acid levels and negative correlation of oleic acid levels with HbA1c concentration were found in PL and TG fractions with higher significance in TGs. This pilot study has shown possible associations of HbA1c, common parameter measured in routine laboratories, with lipid metabolism. The strongest correlation was found in plasma TGs, especially in case of palmitic and oleic acids. This is the first report showing that metabolic control assessed by HbA1c is negatively associated with delta 9D index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ANOVA:

Analysis of variance

CE:

Cholesterol ester

DG:

Diglycerides

DHA:

Docosahexaenoic acid (22:6n-3)

EDTA:

Ethylenediaminetetraacetic acid

EPA:

Eicosapentaenoic acid (20:5n-3)

FA:

Fatty acids

FFA:

Free fatty acid

GC:

Gas chromatography

LA:

Linoleic acid

MUFA:

Monounsaturated fatty acid

PG:

Prostaglandin

PL:

Phospholipid

PUFA:

Polyunsaturated fatty acid

SFA:

Saturated fatty acid

TG:

Triglyceride

TLC:

Thin-layer chromatography

T2D:

Type 2 diabetes mellitus

5D:

5 desaturation

6D:

6 desaturation

9D:

9 desaturation

References

  1. Lee YL, Woo SY, Ahn JH, Cho S, Kim SR. Health-related quality of life in adults with metabolic syndrome: the Korea national health and nutrition examination survey, 2007–2008. Ann Nutr Metab. 2012;61:275–80.

    Article  CAS  PubMed  Google Scholar 

  2. Balkau B, Valensi P, Eschwège E, Slama G. A review of the metabolic syndrome. Diabetes Metab. 2007;33:405–13.

    Article  CAS  PubMed  Google Scholar 

  3. Flowers MT. The delta 9 fatty acid desaturation index as a predictor of metabolic disease. Clin Chem. 2009;55:2071–3.

    Article  CAS  PubMed  Google Scholar 

  4. Gallagher EJ, Le Roith D, Bloomgarden Z. Review of haemoglobin A1C in the management of diabetes. J Diabetes. 2009;1:9–17.

    Article  CAS  PubMed  Google Scholar 

  5. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab. 2003;285:E906–16.

    Article  CAS  PubMed  Google Scholar 

  6. Holčapek M, Cervena B, Cifková E, Lísa M, Chagovets V, Vostálová J, et al. Lipidomic analysis of plasma, erythrocytes and lipoprotein fractions of cardiovascular disease patients using UHPLC/MS, MALDI-MS and multivariate data analysis. J Chromatogr B. 2015;990:52–63.

    Article  Google Scholar 

  7. Králová Lesná I, Suchánek P, Kovář J, Poledne R. Life style change and reverse cholesterol transport in obese women. Physiol Res. 2009;58:47–52.

    Google Scholar 

  8. Lands WE. Long-term fat intake and biomarkers. Am J Clin Nutr. 1995;61:7215–55.

    Google Scholar 

  9. Tvrzická E, Kremmyda LS, Staňková B, Žák A. Fatty acids as biocompounds: their role in human metabolism, health and disease – a review. Part 1: classification, dietary sources and biological functions. Biomed Papers. 2011;155:117–30.

    Article  Google Scholar 

  10. Eitel K, Staiger H, Brendel MD, Brandhorst D, Bretzel RG, Häring HU, et al. Different role of saturated and unsaturated fatty acids in beta-cell apoptosis. Biochem Biophys Res Commun. 2002;299:853–6.

    Article  CAS  PubMed  Google Scholar 

  11. Laaksonen DE, Lakka TA, Lakka HM, Nyyssönen K, Rissanen T, Niskanen LK, et al. Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men. Diabet Med. 2002;19:456–64.

    Article  CAS  PubMed  Google Scholar 

  12. Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 2003;52:726–33.

    Article  CAS  PubMed  Google Scholar 

  13. Nemcova-Fuerstova V, James RF, Kovar J. Inhibitory effect of unsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreatic beta-cells: activation of caspases and ER stress induction. Cell Physiol Biochem. 2011;27:525–38.

    Article  CAS  Google Scholar 

  14. Perxach JM, Guerendiain M, Castellote AI, Estruch R, Covas MI, Fitó M, et al. Plasma fatty acid composition, estimated desaturase activities, and their relation with the metabolic syndrome in a population at high risk of cardiovascular disease. Clin Nutr. 2014;33:90–7.

    Article  Google Scholar 

  15. Quan J, Liu J, Gao X, Liu J, Yang H, Chen W, et al. Palmitate induces interleukin-8 expression in human aortic vascular smooth muscle cells via Toll-like receptor 4/nuclear factor-κB pathway. J Diabet. 2014;6:33–41.

    Article  CAS  Google Scholar 

  16. Nanri A, Mizoue T, Noda M, Takahashi Y, Matsushita Y, Poudel-Tandukar K, et al. Fish intake and type 2 diabetes in Japanese men and women: the Japan public health center-based prospective study. Am J Clin Nutr. 2011;94:884–91.

    Article  CAS  PubMed  Google Scholar 

  17. Wu JH, Micha R, Imamura F, Pan A, Biggs ML, Ajaz O, et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Br J Nutr. 2012;107:214–27.

    Article  Google Scholar 

  18. Vinod Mahato R, Gyawali P, Raut PP, Regmi P, Singh KP, Pandeya DR, et al. Association between glycaemic control and serum lipid profile in type 2 diabetic patients: glycated haemoglobin as a dual biomarker. Biomed Res. 2011;22:375–80.

    CAS  Google Scholar 

  19. Khan HA. Clinical significance of Hba1c as a marker of circulating lipids in male and female type 2 diabetic patients. Acta Diabetol. 2007;44:193–200.

    Article  Google Scholar 

  20. Petitti DB, Imperatore D, Palla SL, Daniels SR, Dolan LM, Kershnar AK, et al. Serum lipids and glucose control: the SEARCH for diabetes in youth study. Arch Pediatr Adolesc Med. 2007;161:159–65.

    Article  PubMed  Google Scholar 

  21. Khan HA, Sobki SH, Khan SA. Association between glycaemic control and lipids profile in type 2 diabetic patients: HbA1c predicts dyslipidaemia. Clin Exp Med. 2007;7:24–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gopal N, Arun Mitra S, Srinivasan AR, Muthurangan G, Saha S, Ramasamy R. Association of levels of HbA1c with triglycerides/high density lipoprotein ration – an indicator of low density lipoprotein particle size in type 2 diabetes mellitus. Adv Lab Med Int. 2012;2:87–95.

    Google Scholar 

  23. Ramona G, Ioan C, Simona T, Luminita P, Simona G, Lavinia M. Relationship between glycosylated haemoglobin and lipid metabolism in patients with type 2 diabetes. Studia Universitatis “Vasile Goldiş” Seria Ştiinţele Vieţii. 2011;21:313–8.

    Google Scholar 

  24. Ståhlman M, Fagerberg B, Adiels M, Ekroos K, Chapman JM, Kontush A, et al. Dyslipidemia, but not hyperglycemia and insulin resistance, is associated with marked alterations in the HDL lipidome in type 2 diabetic subjects in the DIWA cohort: impact on small HDL particles. Biochim Biophys Acta. 2013;11:1609–17.

    Article  Google Scholar 

  25. Samatha P, Siva Prabodh V, Chowdary NVS, Shekhar R. Glycated hemoglobin and serum lipid profile associations in type 2 diabetes mellitus patients. J Pharm Biomed Anal. 2012;17:1–4.

    Google Scholar 

  26. Peter A, Cegan A, Wagner S, Elcnerova M, Königsrainer A, Königsrainer I, et al. Relationships between hepatic stearoyl-CoA desaturase-1 activity and mRNA expression with liver fat content in humans. Am J Physiol Endocrinol Metab. 2011;300:321–6.

    Article  Google Scholar 

  27. Rodriguez Y, Christophe A. Long-chain omega 6 polyunsaturated fatty acids in erythrocyte phospholipids are associated with insulin resistance in non-obese type 2 diabetics. Clin Chim Acta. 2005;354:195–9.

    Article  CAS  PubMed  Google Scholar 

  28. Silbernagel G, Kovarova M, Cegan A, Machann J, Schick F, Lehmann F, et al. High hepatic SCD1 activity is associated with low liver fat content in healthy subjects under a lipogenic diet. J Clin Endocrinol Metab. 2012;97:2288–92.

    Article  Google Scholar 

  29. Fuerstova V, Kopska T, James RF, Kovar J. Comparison of the effect of individual saturated and unsaturated fatty acids on cell growth and death induction in the human pancreatic beta-cell line NES2Y. Life Sci. 2008;82:684–91.

    Article  CAS  Google Scholar 

  30. Králová Lesná I, Suchánek P, Kovář J, Stávek P, Poledne R. Replacement of dietary saturated FAs by PUFAs in diet and reverse cholesterol transport. J Lipid Res. 2008;49:2414–8.

    Article  PubMed  Google Scholar 

  31. Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:914–6.

    Article  Google Scholar 

  32. Doughman SD, Ryan AS, Krupanidhi S, Sanjeevi CB, Mohan V. High DHA dosage from algae oil improves postprandial hypertriglyceridemia and is safe for type-2 diabetics. Int J Diabet Dev Ctries. 2013;33:75–82.

    Article  CAS  Google Scholar 

  33. Kremmyda L, Tvrzicka E, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease - a review. Part 2: fatty acid physiological roles and applications in human health and disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155:195–218.

    Article  CAS  PubMed  Google Scholar 

  34. Poudyal H, Panchal SK, Diwan V, Brown L. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res. 2011;50:372–87.

    Article  CAS  PubMed  Google Scholar 

  35. Aro A. Fatty acid composition of serum lipids: is this marker of fat intake still relevant for identifying metabolic and cardiovascular disorders? Nutr Metab Cardiovasc Dis. 2003;13:253–5.

    Article  CAS  PubMed  Google Scholar 

  36. Riserus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res. 2009;48:44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge grant no. SGFChT 07/2013 of the University of Pardubice for financial support to this work. We would like also to acknowledge Prof Dr Erwin Schleicher, Ph.D. from University Hospital Tübingen for providing samples and consulting results.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Laštovička.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čermák, T., Laštovička, P., Mužáková, V. et al. Association of fatty acid profile in plasma lipid fractions with HbA1c in type 2 diabetic patients. Int J Diabetes Dev Ctries 36, 23–33 (2016). https://doi.org/10.1007/s13410-015-0399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-015-0399-8

Keywords

Navigation