Skip to main content
Log in

A microextraction method for spectrophotometric determination of gold using benzalkonium chloride

  • Research
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

A simple microextraction method has been developed for the preconcentration of Au(III) and its measurement by an ultraviolet–visible spectrophotometer. Benzalkonium chloride, a cationic surfactant, was used as a complexing agent for the preconcentration of Au(III) in the form of AuCl4. An ion pair between AuCl4 and benzalkonium chloride was finely extracted into the 1,2-dichloroethane phase through a simple emulsification process. Parameters affecting the preconcentration of Au(III) were evaluated, including the acidity of the solution, the amount of the cationic reagent, and the effect of interferences. The calibration curve of the method for Au(III) was linear in the range of 0.05–0.80 mg L−1. The detection limit, enrichment factor, and relative standard deviation were 0.01 mg L−1, 40, and 1.9%, respectively. The accuracy of the method was evaluated through addition-recovery tests on real water samples. The results demonstrate that this microextraction method was successfully applied to stream water samples for the preconcentration of Au(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Lansdown ABG (2018) GOLD: human exposure and update on toxic risks. Crit Rev Toxicol 48(7):596–614. https://doi.org/10.1080/10408444.2018.1513991

    Article  CAS  PubMed  Google Scholar 

  2. Zari N, Hassan J, Heydar KT, Ahmadi SH (2020) Ion-association dispersive liquid-liquid microextraction of trace amount of gold in water samples and ore using Aliquat 336 prior to inductivity coupled plasma atomic emission spectrometry determination. J Ind Eng Chem 86:47–52. https://doi.org/10.1016/j.jiec.2017.01.038

    Article  CAS  Google Scholar 

  3. Bagheri M, Mashhadizadeh MH, Razee S (2003) Solid phase extraction of gold by sorption on octadecyl silica membrane disks modified with pentathia-15-crown-5 and determination by AAS. Talanta 60(4):839–844. https://doi.org/10.1016/S0039-9140(03)00136-X

    Article  CAS  PubMed  Google Scholar 

  4. Mohammadpour M, Razmi H (2022) Magnetic solid-phase extraction based on modified magnetic meso-porous silica nanospheres for pre-concentration of trace amounts of gold/silver samples in the water and plant environment before analyzing by flame atomic absorption spectrometry. J Porous Mater 29:1575–1587. https://doi.org/10.1007/s10934-022-01280-8

    Article  CAS  Google Scholar 

  5. Mekprayoon S, Siripinyanond A (2019) Performance evaluation of flow field-flow fractionation and electrothermal atomic absorption spectrometry for size characterization of gold nanoparticles. J Chromatogr A 1604:460493. https://doi.org/10.1016/j.chroma.2019.460493

    Article  CAS  PubMed  Google Scholar 

  6. Kagaya S, Takata D, Yoshimori T, Kanbara T, Tohda K (2010) A sensitive and selective method for determination of gold(III) based on electrothermal atomic absorption spectrometry in combination with dispersive liquid-liquid microextraction using dicyclohexylamine. Talanta 80(3):1364–1370. https://doi.org/10.1016/j.talanta.2009.09.037

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Bas M, Happel S, Randhawa P, McNeil S, Kurakina E, Zeisler S, Maskell K, Hoehr C, Ramogida CF, Radchenko V (2023) Determination of distribution coefficients of mercury and gold on selected extraction chromatographic resins-towards an improved separation method of mercury-197 from proton-irradiated gold targets. J Chromatogr A 1688:463717. https://doi.org/10.1016/j.chroma.2022.463717

    Article  CAS  PubMed  Google Scholar 

  8. Ma Y, Jiang SY, Frimmel HE, Zhu LY (2022) In situ chemical and isotopic analyses and element mapping of multiple-generation pyrite: evidence of episodic gold mobilization and deposition for the Qiucun epithermal gold deposit in Southeast China. Am Min 107(6):1133–1148. https://doi.org/10.2138/am-2022-8030

    Article  Google Scholar 

  9. Hassan J, Zari N, Heydar KT, Ahmadi SH (2016) Ion-association dispersive liquid-liquid microextraction of ultra-trace amount of gold in water samples using Aliquat 336 prior to inductively coupled plasma atomic emission spectrometry determination. J Anal Sci Technol 7:22. https://doi.org/10.1186/s40543-016-0102-9

    Article  CAS  Google Scholar 

  10. Zhang G, Tian M (2015) A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction. Opt Spectrosc 118:513–518. https://doi.org/10.1134/S0030400X15040049

    Article  CAS  Google Scholar 

  11. Nagaraja V, Kumar MK, Giddappa N (2017) Spectrophotometric determination of gold(III) in forensic and pharmaceutical samples and results complemented with ICP AES and EDXRF analysis. Spectrochim Acta A 173:407–417. https://doi.org/10.1016/j.saa.2016.09.045

    Article  CAS  Google Scholar 

  12. Sarkar SG, Dhadke PM (2000) Solvent extraction separation of gold with Cyanex 302 as extractant. J Chinese Chem Soc 47:869–873. https://doi.org/10.1002/jccs.200000117

    Article  CAS  Google Scholar 

  13. Wang Y, Chen S, Liu R, Zhang L, Xue W, Yang Y (2022) Toward green and efficient recycling of Au(III), Pd(II) and Pt(IV) from acidic medium using UCST-type ionic liquid. Sep Purif Technol 298:121620. https://doi.org/10.1016/j.seppur.2022.121620

    Article  CAS  Google Scholar 

  14. Kumar DP, Kumar AP, Reddy TV, Reddy PR (2012) Spectrophotometric determination of gold(III) using 2-hydroxy-3-methoxy benzaldehyde thiosemicarbazone as a chromophoric reagent. ISRN Anal Chem 2012:705142. https://doi.org/10.5402/2012/705142

    Article  Google Scholar 

  15. Rancic SM, Nikolic-Mandic SD, Mandic LM (2005) Kinetic spectrophotometric method for gold(III) determination. Anal Chim Acta 547:144–149. https://doi.org/10.1016/j.aca.2004.11.078

    Article  CAS  Google Scholar 

  16. Themelis DG, Trellopoulos AV, Tzanavaras PD, Sofoniou M (2007) Highly selective flow injection spectrophotometric determination of gold based on its catalytic effect on the oxidation of variamine blue by potassium iodate in aqueous N,N-dimethylformamide medium. Talanta 72(1):277–281. https://doi.org/10.1016/j.talanta.2006.10.031

    Article  CAS  PubMed  Google Scholar 

  17. Amin AS (2010) Utility of solid phase extraction for spectrophotometric determination of gold in water, jewel and ore samples. Spectrochim Acta A 77:1054–1058. https://doi.org/10.1016/j.saa.2010.08.072

    Article  CAS  Google Scholar 

  18. Li H, Zhai Y (2008) Solid-phase extraction of trace Au(III) with SDG and determination by the catalytic spectrophotometric method. Rare Met 27(6):560–565. https://doi.org/10.1016/S1001-0521(08)60182-5

    Article  CAS  Google Scholar 

  19. Liu X, Wu Y, Wang Y, Wei H, Guo J, Yang Y (2022) Extraction of Au(iii) from hydrochloric acid media using a novel amide-based ionic liquid. New J Chem 46:19824–19833. https://doi.org/10.1039/D2NJ04437D

    Article  CAS  Google Scholar 

  20. Hasanin THA, Okamoto Y, Fujiwar T (2016) A flow method based on solvent extraction coupled on-line to a reversed micellar mediated chemiluminescence detection for selective determination of gold(III) and gallium(III) in water and industrial samples. Talanta 148:700–706. https://doi.org/10.1016/j.talanta.2015.04.045

    Article  CAS  PubMed  Google Scholar 

  21. Kamble GS, Kolekar SS, Han SH, Anuse MA (2010) Synergistic liquid–liquid extractive spectrophotometric determination of gold(III) using 1-(2,4-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol. Talanta 81(3):1088–1095. https://doi.org/10.1016/j.talanta.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  22. Mahpishanian S, Shemirani F (2010) Ionic liquid-based modified cold-induced aggregation microextraction (M-CIAME) as a novel solvent extraction method for determination of gold in saline solutions. Miner Eng 23(10):823–825. https://doi.org/10.1016/j.mineng.2010.05.010

    Article  CAS  Google Scholar 

  23. Vidhate KN, Shaikh UPK, Arbad BR, Lande MK (2015) Extraction and separation studies of gold(III) with 4-(4-methoxybenzylideneimino)-5-methyl-4H-1,2,4-triazole-3-thiol in hydrochloric acid medium. J Saudi Chem Soc 19(1):54–58. https://doi.org/10.1016/j.jscs.2011.12.018

    Article  Google Scholar 

  24. Jiang J, He Y, Gao H, Wu J (2005) Solvent extraction of gold from alkaline cyanide solution with a tri-n-octylamine/trin-butyl phosphate/n-heptane synergistic system. Solvent Extr Ion Exch 23:113–129. https://doi.org/10.1081/SEI-200044389

    Article  CAS  Google Scholar 

  25. Suryavanshi V, Kokare A, Zanje S, Mulik A, Pawar R, Patil M, Gaikwad A, Anuse M, Mulik G (2018) Ion-pair based liquid-liquid extraction of gold(III) from malonate media using 2-octylaminopyridine as an extractant: analysis of alloys, minerals, and drug samples. Turk J Chem 42(4):1032–1044. https://doi.org/10.3906/kim-1712-34

    Article  CAS  Google Scholar 

  26. Khogare BT, Kamble GS, Kokare AN, Zanje SB, Suryavanshi VJ, Anuse MA, Piste PB, Kokare BN (2016) Development of novel solvent extraction method for determination of gold(III) using 4-heptylaminopyridine: application to alloys and environmental analysis. J Environ Chem Eng 4(3):3075–3083. https://doi.org/10.1016/j.jece.2016.06.001

    Article  CAS  Google Scholar 

  27. Song X, Huang X (2022) Recent developments in microextraction techniques for detection and speciation of heavy metals. Adv Sample Prep 2:100019. https://doi.org/10.1016/j.sampre.2022.100019

    Article  Google Scholar 

  28. Herce-Sesa BS, López-López JA, Moreno C (2021) Advances in ionic liquids and deep eutectic solvents-based liquid phase microextraction of metals for sample preparation in Environmental Analytical Chemistry. Trends Anal Chem 143:116398. https://doi.org/10.1016/j.trac.2021.116398

    Article  CAS  Google Scholar 

  29. Mortada WI, Azooz EA (2022) Microextraction of metal ions based on solidification of a floating drop: basics and recent updates. Trends Environ Anal Chem 34:e00163. https://doi.org/10.1016/j.teac.2022.e00163

    Article  CAS  Google Scholar 

  30. Kocúrová L, Balogh IS, Skrlíková J, Posta J, Andruch V (2010) A novel approach in dispersive liquid-liquid microextraction based on the use of an auxiliary solvent for adjustment of density UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric determination of gold based on ion pair formation. Talanta 82(5):1958–1964. https://doi.org/10.1016/j.talanta.2010.08.028

    Article  CAS  PubMed  Google Scholar 

  31. Salimi F, Ramezani M (2019) Microfunnel magnetic stirring-assisted liquid-liquid microextraction method for determination of trace amounts of gold after optimization employing response surface methodology. Sep Sci Technol 54(14):2274–2282. https://doi.org/10.1080/01496395.2018.1543321

    Article  CAS  Google Scholar 

  32. Blanco MCP, Franco AP, Lorenzo SM, Castro MJG (2023) Mixed-mode chromatography of mixed functionalized analytes as the homologues of benzalkonium chloride. Application to pharmaceutical formulations. Talanta 255:124228. https://doi.org/10.1016/j.talanta.2022.124228

    Article  CAS  Google Scholar 

  33. Ivakhnitskaia E, Souboch V, Dallacasagrande V, Mizerska K, Souboch E, Sarkar J, Guaiquil VH, Tseng KY, Hirata H, Rosenblatt MI (2022) Benzalkonium chloride, a common ophthalmic preservative, compromises rat corneal cold sensitive nerve activity. Ocul Surf 26:88–96. https://doi.org/10.1016/j.jtos.2022.07.012

    Article  PubMed  Google Scholar 

  34. Bahadir Z, Yazar M, Marguí E (2018) Ligandless surfactant-assisted emulsification microextraction and total reflection X-ray fluorescence analysis for ionic gold traces quantification in aqueous samples and extracts containing gold nanoparticles. Anal Chem 90:14081–14087. https://doi.org/10.1021/acs.analchem.8b04717

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto S, Kanai S, Takeyama M, Nishiyama Y, Imura H, Nagatani H (2020) Ion transfer and adsorption of water-soluble metal complexes of 8-hydroxyquinoline derivatives at the water|1,2-dichloroethane interface. J Electroanal Chem 856:113566. https://doi.org/10.1016/j.jelechem.2019.113566

    Article  CAS  Google Scholar 

  36. Uçak ŞŞ, Aydın A (2022) A novel thiourea derivative for preconcentration of copper(II), nickel(II), cadmium(II), lead(II) and iron(II) from seawater samples for flame atomic absorption spectrophotometry. Mar Pollut Bull 180:113787. https://doi.org/10.1016/j.marpolbul.2022.113787

    Article  CAS  Google Scholar 

Download references

Funding

The author expresses gratitude to the Scientific Research Projects of Giresun University for financial support (Project FEN-BAP-A-090323–13), Turkey.

Author information

Authors and Affiliations

Authors

Contributions

I am the sole author of the work

Corresponding author

Correspondence to Zekeriyya Bahadır.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadır, Z. A microextraction method for spectrophotometric determination of gold using benzalkonium chloride. Gold Bull 56, 191–198 (2023). https://doi.org/10.1007/s13404-024-00341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-024-00341-x

Keywords

Navigation