Skip to main content
Log in

Synthesis of amphiphilic Janus gold nanoparticles stabilized with triphenylphosphine and D-penicillamine by ligand exchange at toluene/water emulsion interface

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

Ligand exchange was triggered at toluene/water emulsion interface between homogeneous gold nanoparticles (Au NPs) with triphenylphosphine (PPh3) and D-penicillamine (D-PA), resulted in amphiphilic Janus Au NPs with both phosphine and thiolate ligands. TEM and XRD analyses indicate that the product is composed of Au nanocrystals in an average diameter of about 3.7 nm. XPS, FTIR, Raman, and 1H NMR analyses demonstrate that the Au NPs are protected with hydrophilic D-PA molecules and lipophilic PPh3 ligands in a molecular ratio of ca. 1.8. The NOESY analysis and contact angle measurement further suggest that the D-PA and PPh3 molecules are spontaneously separated to form compartmentalized hydrophilic and lipophilic regions on the individual Au NPs, which exhibit good catalytic performance and recyclability on the reduction of 4-nitrophenol. The results demonstrate that amphiphilic Janus Au NPs can be synthesized by partly exchange of PPh3 with D-PA at toluene/water emulsion interface and are potentially applicable for other phosphine/thiolate pairs to modify Au NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gennes PGD (1992) Soft matter (Nobel Lecture) [J]. Angew Chem Int Ed 31(7):842–845

    Article  Google Scholar 

  2. Luo K, Xiang Y, Wang H, Xiang L, Luo Z (2016) Multiple-sized amphiphilic Janus gold nanoparticles by ligand exchange at toluene/water interface [J]. J Mater Sci Technol 32(8):733–737

    Article  CAS  Google Scholar 

  3. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis [J]. Coord Chem Rev 257:638–665

    Article  CAS  Google Scholar 

  4. Jackson AM, Hu Y, Silva PJ, Stellacci F (2006) From homoligand-to mixed-ligand-monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation [J]. J Am Chem Soc 128(34):11135–11149

    Article  CAS  Google Scholar 

  5. Hashmi ASK, Hutchings GJ (2006) Gold catalysis [J]. Angew Chem Int Ed 45(47):7896–7936

    Article  Google Scholar 

  6. Hashmi ASK (2007) Gold-catalyzed organic reactions [J]. Chem Rev 107(7):3180–3211

    Article  CAS  Google Scholar 

  7. Crossley S, Faria J, Shen M, Resasco DE (2010) Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface [J]. Science 327(5961):68–72

    Article  CAS  Google Scholar 

  8. Cole-Hamilton DJ (2010) Janus catalysts direct nanoparticle reactivity [J]. Science 327(5961):41–42

    Article  CAS  Google Scholar 

  9. Luo K, Huang T, Luo Y, Wang H, Sang C, Li X (2013) Thin film assembly of gold nanoparticles for vapor sensing via droplet interfacial reaction [J]. J Mater Sci Technol 29(5):401–405

    Article  CAS  Google Scholar 

  10. Glogowski E, He J, Russell TP, Emrick T (2005) Mixed monolayer coverage on gold nanoparticles for interfacial stabilization of immiscible fluids [J]. Chem Commun 32(32):4050–4052

    Article  Google Scholar 

  11. Nørgaard K, Weygand MJ, Kjaer K, Brust M, Bjørnholm T (2004) Adaptive chemistry of bifunctional gold nanoparticles at the air/water interface. A synchrotron X-ray study of giant amphiphiles [J]. Faraday Discuss 125(125):221–233

    Article  Google Scholar 

  12. Luo K, Wang H, Li X (2014) Electrocatalytic activity of ligand-protected gold particles: formaldehyde oxidation [J]. Gold Bull 47(1–2):41–46

    Article  CAS  Google Scholar 

  13. Cao H, Yang Y, Chen X, Zhao Z (2016) Intelligent Janus nanoparticles for intracellular real-time monitoring of dual drug release [J]. Nanoscale 8(12):6754–6760

    Article  CAS  Google Scholar 

  14. Binder WH (2005) Supramolecular assembly of nanoparticles at liquid-liquid interfaces [J]. Angew Chem Int Ed 44(33):5172–5175

    Article  CAS  Google Scholar 

  15. Pradhan S, Xu L, Chen S (2007) Janus nanoparticles by interfacial engineering [J]. Adv Funct Mater 17(14):2385–2392

    Article  CAS  Google Scholar 

  16. Luo K, Hu C, Luo Y, Li D, Xiang Y, Mu Y, Wang H, Luo Z (2017) One-pot synthesis of ultrafine amphiphilic Janus gold nanoparticles by toluene/water emulsion reaction [J]. RSC Adv 7(81):51605–51611

    Article  CAS  Google Scholar 

  17. Vilain C, Goettmann F, Moores A, Floch PL, Sanchez C (2007) Study of metal nanoparticles stabilised by mixed ligand shell: a striking blue shift of the surface-plasmon band evidencing the formation of Janus nanoparticles [J]. J Mater Chem 17(33):3509–3514

    Article  CAS  Google Scholar 

  18. Rao CNR, Kulkarni GU, Agrawal VV, Gautam UK, Ghosh M, Tumkurkar U (2005) Use of the liquid–liquid interface for generating ultrathin nanocrystalline films of metals, chalcogenides, and oxides [J]. J Colloid Interface Sci 289(2):305–318

    Article  CAS  Google Scholar 

  19. Luo K, Schroeder SLM, Dryfe RAW (2009) Formation of gold nanocrystalline films at the liquid/liquid interface: comparison of direct interfacial reaction and interfacial assembly [J]. Chem Mater 21(18):4172–4183

    Article  CAS  Google Scholar 

  20. Pradhan S, Brown LE, Konopelski JP, Chen S (2009) Janus nanoparticles: reaction dynamics and NOESY characterization [J]. J Nanopart Res 11(8):1895–1903

    Article  CAS  Google Scholar 

  21. Morris KF, Froberg AL, Becker BA, Almeida VK, Tarus J, Larive CK (2005) Using NMR to develop insights into electrokinetic chromatography [J]. Anal Chem 77(13):255–263

    Article  Google Scholar 

  22. Kemal L, Jiang XC, Wong K, Yu AB (2008) Experiment and theoretical study of poly (vinyl pyrrolidone)-controlled gold nanoparticles [J]. J Phys Chem C 112(40):15656–15664

    Article  CAS  Google Scholar 

  23. Liu X, Yu M, Kim H, Mameli M, Stellacci F (2012) Determination of monolayer-protected gold nanoparticle ligand-shell morphology using NMR [J]. Nat Commun 3(6):1182–1190

    Article  Google Scholar 

  24. Hyewon K, Carney RP, Javier R, Ong QK, Liu X, Francesco S (2012) Synthesis and characterization of Janus gold nanoparticles [J]. Adv Mater 24(28):3857–3863

    Article  Google Scholar 

  25. Du X, He J, Zhu J, Sun L, An S (2012) Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol [J]. Appl Surf Sci 258(7):2717–2723

    Article  CAS  Google Scholar 

  26. Wang M, Niu R, Huang M, Zhang Y (2015) The surface structural changes of self-assembly monolayer au nanoparticles and their regulated catalytic activity [J]. Sci Sin Chim 45(1):76–89

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (No. 51874051 and 21163004) and Guangxi Natural Science Foundation (No. 2018GXNSFAA138133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Luo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Luo, Y., Lan, J. et al. Synthesis of amphiphilic Janus gold nanoparticles stabilized with triphenylphosphine and D-penicillamine by ligand exchange at toluene/water emulsion interface. Gold Bull 53, 55–62 (2020). https://doi.org/10.1007/s13404-020-00274-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-020-00274-1

Keywords

Navigation