Skip to main content
Log in

Surface-induced formation of stereogenic centers on gold nanoparticles through diastereoselective interfacial Henry reaction: an NMR investigation

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

This study aims at the synthesis of gold nanoparticles (2–3 nm) functionalized with different nitroalkane-terminated thiols and investigates the chemical reactivity of these confined nitroalkanes towards aldehydes to yield β-nitroalcohols. Interfacial Henry reaction between fixed nitroalkane-terminated thiols with various aromatic and heteroaromatic aldehydes resulted in stereogenic centers on the surface of mixed-monolayer-protected gold nanoparticles (MMPNs). The ratio of the resulting diastereomers was determined by 1H NMR spectroscopy. It was found that some parameters such as the chain length of nitroalkyl and the nature of aromatic aldehyde play the main role in affecting the diastereomeric ratio on the surface of MMPNs. Certain trends have been analyzed from the data, and it can be inferred that some aldehydes approximately prefer the formation of anti diastereomers as the predominant products, while others give syn β-nitroalcohols. We have attributed this stereoselectivity to the packed layers, forceful lateral interactions (van der Waals), and intramolecular hydrogen bonding on the surface of modified gold nanoparticles that are able to suppress the role of solvent and intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Scheme 5

Similar content being viewed by others

References

  1. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  Google Scholar 

  2. Arndt S, Rudolph M, Hashmi ASK (2017) Gold-based frustrated Lewis acid/base pairs (FLPs). Gold Bull 50(3):267–282

    Article  Google Scholar 

  3. Xie J, Li J, Weingand V, Rudolph M, Hashmi ASK (2016) Intermolecular photocatalyzed heck-like coupling of unactivated alkyl bromides by a dinuclear gold complex. Chem Eur J 22(36):12646–12650

    Article  Google Scholar 

  4. Chechik V, Crooks RM, Stirling CJ (2000) Reactions and reactivity in self assembled monolayers. Adv Mater 12(16):1161–1171

    Article  Google Scholar 

  5. Kwon Y, Mrksich M (2002) Dependence of the rate of an interfacial Diels-Alder reaction on the steric environment of the immobilized dienophile: an example of enthalpy-entropy compensation. J Am Chem Soc 124(5):806–812

    Article  Google Scholar 

  6. Sullivan TP, Huck WT (2003) Reactions on monolayers: organic synthesis in two dimensions. Eur J Org Chem 2003(1):17–29

    Article  Google Scholar 

  7. Alizadeh A, Abdi G, Khodaei MM (2016) Colorimetric and visual detection of silver (I) using gold nanoparticles modified with furfuryl alcohol. Microchim Acta 183(6):1995–2003

    Article  Google Scholar 

  8. Alizadeh A, Khodaei M, Karami C, Workentin M, Shamsipur M, Sadeghi M (2010) Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles. Nanotechnology 21(31):315503

    Article  Google Scholar 

  9. Alizadeh A, Khodaei MM, Hamidi Z, Bin Shamsuddin M (2014) Naked-eye colorimetric detection of Cu 2+ and Ag+ ions based on close-packed aggregation of pyridines-functionalized gold nanoparticles. Sensors Actuators B Chem 190:782–791

    Article  Google Scholar 

  10. An B-K, Kwon S-K, Jung S-D, Park SY (2002) Enhanced emission and its switching in fluorescent organic nanoparticles. J Am Chem Soc 124(48):14410–14415

    Article  Google Scholar 

  11. Kommareddy S, Amiji M (2007) Poly (ethylene glycol)–modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomed Nanotechnol Biol Med 3(1):32–42

    Article  Google Scholar 

  12. Asiri AM, Hashmi ASK (2016) Gold-catalysed reactions of diynes. Chem Soc Rev 45(16):4471–4503

    Article  Google Scholar 

  13. Xie J, Pan C, Abdukader A, Zhu C (2014) Gold-catalyzed C (sp 3)–H bond functionalization. Chem Soc Rev 43(15):5245–5256

    Article  Google Scholar 

  14. Xie J, Li H, Zhou J, Cheng Y, Zhu C (2012) A highly efficient gold-catalyzed oxidative C-C coupling from C-H bonds using air as oxidant. Angew Chem Int Ed 124(5):1278–1281

    Article  Google Scholar 

  15. Ismaili H, Lee S, Workentin MS (2010) Diazirine-modified gold nanoparticle: template for efficient photoinduced interfacial carbene insertion reactions. Langmuir 26(18):14958–14964

    Article  Google Scholar 

  16. Drechsler U, Erdogan B, Rotello VM (2004) Nanoparticles: scaffolds for molecular recognition. Chem Eur J 10(22):5570–5579

    Article  Google Scholar 

  17. Hashmi ASK (2007) Gold-catalyzed organic reactions. Chem Rev 107(7):3180–3211

    Article  Google Scholar 

  18. Duncan B, Kim C, Rotello VM (2010) Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Control Release 148(1):122–127

    Article  Google Scholar 

  19. Wang Y, Yin X, Shi M, Li W, Zhang L, Kong J (2006) Probing chiral amino acids at sub-picomolar level based on bovine serum albumin enantioselective films coupled with silver-enhanced gold nanoparticles. Talanta 69(5):1240–1245

    Article  Google Scholar 

  20. Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B (2004) A case for enantioselective allylic alkylation catalyzed by palladium nanoparticles. J Am Chem Soc 126(6):1592–1593

    Article  Google Scholar 

  21. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45(47):7896–7936

    Article  Google Scholar 

  22. Pflästerer D, Hashmi ASK (2016) Gold catalysis in total synthesis—recent achievements. Chem Soc Rev 45(5):1331–1367

    Article  Google Scholar 

  23. You CC, Agasti SS, Rotello VM (2008) Isomeric control of protein recognition with amino acid and dipeptide functionalized gold nanoparticles. Chem Eur J 14(1):143–150

    Article  Google Scholar 

  24. Yanagimoto Y, Negishi Y, Fujihara H, Tsukuda T (2006) Chiroptical activity of BINAP-stabilized undecagold clusters. J Phys Chem B 110(24):11611–11614

    Article  Google Scholar 

  25. Yao H, Miki K, Nishida N, Sasaki A, Kimura K (2005) Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines. J Am Chem Soc 127(44):15536–15543

    Article  Google Scholar 

  26. Shemer G, Krichevski O, Markovich G, Molotsky T, Lubitz I, Kotlyar AB (2006) Chirality of silver nanoparticles synthesized on DNA. J Am Chem Soc 128(34):11006–11007

    Article  Google Scholar 

  27. Hartlen KD, Ismaili H, Zhu J, Workentin MS (2011) Michael addition reactions for the modification of gold nanoparticles facilitated by hyperbaric conditions. Langmuir 28(1):864–871

    Article  Google Scholar 

  28. Lang K, Park J, Hong S (2010) Development of bifunctional aza-bis (oxazoline) copper catalysts for enantioselective henry reaction. J Org Chem 75(19):6424–6435

    Article  Google Scholar 

  29. Abdi G, Alizadeh A, Khodaei M, Shamsuddin M, Ghouzivand S, Fakhari M, Beygzadeh M, Fallah A (2015) N, N-Dimethylbiguanide immobilized on mesoporous and magnetically separable silica: highly selective and feasible organocatalyst for synthesis of nitroalcohols. Iran J Catal 5(3):261–268

    Google Scholar 

  30. Mei H, Xiao X, Zhao X, Fang B, Liu X, Lin L, Feng X (2015) Catalytic asymmetric Henry reaction of nitroalkanes and aldehydes catalyzed by a chiral N, N-dioxide/Cu (I) complex. J Org Chem 80(4):2272–2280

    Article  Google Scholar 

  31. Alizadeh A, Khodaei MM, Abdi G, Kordestani D (2012) The first report on chemoselective biguanide-catalyzed henry reaction under neat conditions. Bull Kor Chem Soc 33(11):3640–3644

    Article  Google Scholar 

  32. Lecea B, Arrieta A, Morao I, Cossío FP (1997) Ab initio models for the nitroaldol (Henry) reaction. Chem Eur J 3(1):20–28

    Article  Google Scholar 

  33. Palomo C, Oiarbide M, Mielgo A (2004) Unveiling reliable catalysts for the asymmetric nitroaldol (Henry) reaction. Angew Chem Int Ed 43(41):5442–5444

    Article  Google Scholar 

  34. Seebach D, Colvin EW, Lehr F, Weller T (1978) Forschung, Wissenschaft. RN 6 (14029):6

  35. Seebach D, Beck AK, Mukhopadhyay T, Thomas E (1982) Diastereoselective synthesis of nitroaldol derivatives. Helv Chim Acta 65(4):1101–1133

    Article  Google Scholar 

  36. Karami C, Alizadeh A, Taher M, Hamidi Z, Bahrami B (2016) UV-visible spectroscopy detection of iron (III) ion on modified gold nanoparticles with a hydroxamic acid. J Appl Spectrosc 83(4):687–693

    Article  Google Scholar 

  37. Iqbal P, Critchley K, Attwood D, Tunnicliffe D, Evans S, Preece J (2008) Chemical manipulation by X-rays of functionalized thiolate self-assembled monolayers on Au. Langmuir 24(24):13969–13976

    Article  Google Scholar 

  38. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33(1):27–36

    Article  Google Scholar 

  39. Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15(11):3782–3789

    Article  Google Scholar 

  40. De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20(22):4225–4241

    Article  Google Scholar 

  41. Aslan K, Lakowicz JR, Geddes CD (2004) Nanogold-plasmon-resonance-based glucose sensing. Anal Biochem 330(1):145–155

    Article  Google Scholar 

  42. Kell AJ, Alizadeh A, Yang L, Workentin MS (2005) Monolayer-protected gold nanoparticle coalescence induced by photogenerated radicals. Langmuir 21(21):9741–9746

    Article  Google Scholar 

  43. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis G, van der Velden JW (1981) Au55 [P (C6H5) 3] 12CI6—ein Goldcluster ungewöhnlicher Größe. Chem Ber 114(11):3634–3642

    Article  Google Scholar 

  44. Jadhav SA (2012) Functional self-assembled monolayers (SAMs) of organic compounds on gold nanoparticles. J Mater Chem 22(13):5894–5899

    Article  Google Scholar 

  45. Chan EW, Yu L (2002) Chemoselective immobilization of gold nanoparticles onto self-assembled monolayers. Langmuir 18(2):311–313

    Article  Google Scholar 

  46. Lipka JJ, Hainfeld JF, Wall JS (1983) Undecagold labeling of a glycoprotein: STEM visualization of an undecagoldphosphine cluster labeling the carbohydrate sites of human haptoglobin—hemoglobin complex. J Ultrastruct Res 84(2):120–129

    Article  Google Scholar 

  47. Thomas KG, Ipe BI, Sudeep P (2002) Photochemistry of chromophore-functionalized gold nanoparticles. Pure Appl Chem 74(9):1731–1738

    Article  Google Scholar 

  48. Bareman JP, Klein ML (1990) Collective tilt behavior in dense, substrate-supported monolayers of long-chain molecules: a molecular dynamics study. J Phys Chem 94(13):5202–5205

    Article  Google Scholar 

  49. Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfaces. Annu Rev Phys Chem 43(1):437–463

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Razi University for their financial support for accomplishment of the work and providing necessary facilities. The authors would like to thank the Dr. Sukhvir Bhangu for her valuable comments to improve the quality of the paper. G. Abdi is also thankful to the Iran Nanotechnology Initiative Council (INIC) for their partial support on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolhamid Alizadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3862 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, G., Alizadeh, A. Surface-induced formation of stereogenic centers on gold nanoparticles through diastereoselective interfacial Henry reaction: an NMR investigation. Gold Bull 51, 65–74 (2018). https://doi.org/10.1007/s13404-018-0232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-018-0232-5

Keywords

Navigation