Skip to main content

Advertisement

Log in

Competition between p53 and YY1 determines PHGDH expression and malignancy in bladder cancer

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Serine metabolism is frequently dysregulated in many types of cancers and the tumor suppressor p53 is recently emerging as a key regulator of serine metabolism. However, the detailed mechanism remains unknown. Here, we investigate the role and underlying mechanisms of how p53 regulates the serine synthesis pathway (SSP) in bladder cancer (BLCA).

Methods

Two BLCA cell lines RT-4 (WT p53) and RT-112 (p53 R248Q) were manipulated by applying CRISPR/Cas9 to examine metabolic differences under WT and mutant p53 status. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and non-targeted metabolomics analysis were adopted to identify metabolomes changes between WT and p53 mutant BLCA cells. Bioinformatics analysis using the cancer genome atlas and Gene Expression Omnibus datasets and immunohistochemistry (IHC) staining was used to investigate PHGDH expression. Loss-of-function of PHGDH and subcutaneous xenograft model was adopted to investigate the function of PHGDH in mice BLCA. Chromatin immunoprecipitation (Ch-IP) assay was performed to analyze the relationships between YY1, p53, SIRT1 and PHGDH expression.

Results

SSP is one of the most prominent dysregulated metabolic pathways by comparing the metabolomes changes between wild-type (WT) p53 and mutant p53 of BLCA cells. TP53 gene mutation shows a positive correlation with PHGDH expression in TCGA-BLCA database. PHGDH depletion disturbs the reactive oxygen species homeostasis and attenuates the xenograft growth in the mouse model. Further, we demonstrate WT p53 inhibits PHGDH expression by recruiting SIRT1 to the PHGDH promoter. Interestingly, the DNA binding motifs of YY1 and p53 in the PHGDH promoter are partially overlapped which causes competition between the two transcription factors. This competitive regulation of PHGDH is functionally linked to the xenograft growth in mice.

Conclusion

YY1 drives PHGDH expression in the context of mutant p53 and promotes bladder tumorigenesis, which preliminarily explains the relationship between high-frequency mutations of p53 and dysfunctional serine metabolism in bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. F. Massari, C. Ciccarese, M. Santoni, R. Iacovelli, R. Mazzucchelli, F. Piva, M. Scarpelli, R. Berardi, G. Tortora, A. Lopez-Beltran, L. Cheng, R. Montironi, Metabolic phenotype of bladder cancer. Cancer Treat. Rev. 45, 46–57 (2016). https://doi.org/10.1016/j.ctrv.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  2. B.L. Woolbright, M. Ayres, J.A. Taylor III, Metabolic changes in bladder cancer. Urol. Oncol. 36, 327–337 (2018). https://doi.org/10.1016/j.urolonc.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  3. E.R. Kastenhuber, S.W. Lowe, Putting p53 in Context. Cell 170, 1062–1078 (2017). https://doi.org/10.1016/j.cell.2017.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. P. Berggren, G. Steineck, J. Adolfsson, J. Hansson, O. Jansson, P. Larsson, B. Sandstedt, H. Wijkstrom, K. Hemminki, p53 mutations in urinary bladder cancer. Br. J. Cancer 84, 1505–1511 (2001). https://doi.org/10.1054/bjoc.2001.1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. W.C. Kusser, X. Miao, B.W. Glickman, J.M. Friedland, N. Rothman, G.P. Hemstreet, J. Mellot, D.C. Swan, P.A. Schulte, R.B. Hayes, p53 mutations in human bladder cancer. Environ. Mol. Mutagen. 24, 156–160 (1994). https://doi.org/10.1002/em.2850240303

    Article  CAS  PubMed  Google Scholar 

  6. J.C. Schroeder, K. Conway, Y. Li, K. Mistry, D.A. Bell, J.A. Taylor, p53 mutations in bladder cancer: evidence for exogenous versus endogenous risk factors. Cancer Res. 63, 7530–7538 (2003)

    CAS  PubMed  Google Scholar 

  7. J. Liu, C. Zhang, W. Hu, Z. Feng, Tumor suppressor p53 and its mutants in cancer metabolism. Cancer Lett. 356, 197–203 (2015). https://doi.org/10.1016/j.canlet.2013.12.025

    Article  CAS  PubMed  Google Scholar 

  8. P.A. Muller, K.H. Vousden, Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25, 304–317 (2014). https://doi.org/10.1016/j.ccr.2014.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. L. Sun, L. Song, Q. Wan, G. Wu, X. Li, Y. Wang, J. Wang, Z. Liu, X. Zhong, X. He, S. Shen, X. Pan, A. Li, Y. Wang, P. Gao, H. Tang, H. Zhang, Cmyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell. Res. 25, 429–444 (2015). https://doi.org/10.1038/cr.2015.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Q. Li, J. Qiu, H. Yang, G. Sun, Y. Hu, D. Zhu, Z. Deng, X. Wang, J. Tang, R. Jiang, Kinesin family member 15 promotes cancer stem cell phenotype and malignancy via reactive oxygen species imbalance in hepatocellular carcinoma. Cancer Lett (2019). https://doi.org/10.1016/j.canlet.2019.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  11. L. Wei, D. Lee, C.T. Law, M.S. Zhang, J. Shen, D.W. Chin, A. Zhang, F.H. Tsang, C.L. Wong, I.O. Ng, C.C. Wong, C.M. Wong, Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat. Commun. 10, 4681 (2019). https://doi.org/10.1038/s41467-019-12606-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. B. Zhang, A. Zheng, P. Hydbring, G. Ambroise, A.T. Ouchida, M. Goiny, H. Vakifahmetoglu-Norberg, E. Norberg, PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell. Rep. 19, 2289–2303 (2017). https://doi.org/10.1016/j.celrep.2017.05.067

    Article  CAS  PubMed  Google Scholar 

  13. D. Samanta, Y. Park, S.A. Andrabi, L.M. Shelton, D.M. Gilkes, G.L. Semenza, PHGDH expression is required for mitochondrial redox homeostasis, breast Cancer stem cell maintenance, and lung metastasis. Cancer Res. 76, 4430–4442 (2016). https://doi.org/10.1158/0008-5472.CAN-16-0530

    Article  CAS  PubMed  Google Scholar 

  14. E. Gronroos, A.A. Terentiev, T. Punga, J. Ericsson, YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc. Natl. Acad. Sci. U.S.A 101, 12165–12170 (2004). https://doi.org/10.1073/pnas.0402283101

    Article  PubMed  PubMed Central  Google Scholar 

  15. C. Zhang, X. Zhang, W. Zhao, C. Zeng, W. Li, B. Li, X. Luo, J. Li, J. Jiang, B. Deng, D.W. McComb, Y. Dong, Chemotherapy drugs derived nanoparticles encapsulating mRNA encoding tumor suppressor proteins to treat triple-negative breast cancer. Nano Res. 12, 855–861 (2019). https://doi.org/10.1007/s12274-019-2308-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. F.A. Ran, P.D. Hsu, J. Wright, V. Agarwala, D.A. Scott, F. Zhang, Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013). https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Shao, J. Lu, W. Zhu, H. Yu, X. Jing, Y.L. Wang, X. Wang, X.J. Wang, Derepression of LOXL4 inhibits liver cancer growth by reactivating compromised p53. Cell. Death Differ. 26, 2237–2252 (2019). https://doi.org/10.1038/s41418-019-0293-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Y. Wu, D. Liang, Y. Wang, M. Bai, W. Tang, S. Bao, Z. Yan, D. Li, J. Li, Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell. Stem Cell 13, 659–662 (2013). https://doi.org/10.1016/j.stem.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  19. J.P. Zhang, X.L. Li, G.H. Li, W. Chen, C. Arakaki, G.D. Botimer, D. Baylink, L. Zhang, W. Wen, Y.W. Fu, J. Xu, N. Chun, W. Yuan, T. Cheng, X.B. Zhang (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 18, 35. https://doi.org/10.1186/s13059-017-1164-8

  20. X. Wang, R. Liu, X. Qu, H. Yu, H. Chu, Y. Zhang, W. Zhu, X. Wu, H. Gao, B. Tao, W. Li, J. Liang, G. Li, W. Yang, Alpha-ketoglutarate-activated NF-kappaB signaling promotes compensatory glucose uptake and brain Tumor Development. Mol. Cell 76(e147), 148–162 (2019). https://doi.org/10.1016/j.molcel.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  21. O.D. Maddocks, C.R. Berkers, S.M. Mason, L. Zheng, K. Blyth, E. Gottlieb, K.H. Vousden, Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013). https://doi.org/10.1038/nature11743

    Article  CAS  PubMed  Google Scholar 

  22. Y. Ou, S.J. Wang, L. Jiang, B. Zheng, W. Gu, p53 protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. J. Biol. Chem. 290, 457–466 (2015). https://doi.org/10.1074/jbc.M114.616359

    Article  CAS  PubMed  Google Scholar 

  23. T. Terzian, Y.A. Suh, T. Iwakuma, S.M. Post, M. Neumann, G.A. Lang, C.S. Van Pelt, G. Lozano, The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 22, 1337–1344 (2008). https://doi.org/10.1101/gad.1662908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Halasi, M. Wang, T.S. Chavan, V. Gaponenko, N. Hay, A.L. Gartel, ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem. J. 454, 201–208 (2013). https://doi.org/10.1042/BJ20130282

    Article  CAS  PubMed  Google Scholar 

  25. A.M. Florea, D. Busselberg, Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 3, 1351–1371 (2011). https://doi.org/10.3390/cancers3011351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. Marullo, E. Werner, N. Degtyareva, B. Moore, G. Altavilla, S.S. Ramalingam, P.W. Doetsch, Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS ONE 8, e81162 (2013). https://doi.org/10.1371/journal.pone.0081162

    Article  PubMed  PubMed Central  Google Scholar 

  27. A.M. Deaton, A. Bird, CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011). https://doi.org/10.1101/gad.2037511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. L. Verdone, E. Agricola, M. Caserta, E. Di Mauro, Histone acetylation in gene regulation. Brief. Funct. Genomic. Proteomic 5, 209–221 (2006). https://doi.org/10.1093/bfgp/ell028

    Article  CAS  PubMed  Google Scholar 

  29. C.L. Brooks, W. Gu, How does SIRT1 affect metabolism, senescence and cancer? Nat. Rev. Cancer 9, 123–128 (2009). https://doi.org/10.1038/nrc2562

    Article  CAS  PubMed  Google Scholar 

  30. J.T. Zilfou, S.W. Lowe (2009) Tumor suppressive functions of p53. Cold Spring Harb. Perspect. Biol. 1, a001883. https://doi.org/10.1101/cshperspect.a001883

  31. M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003). https://doi.org/10.1093/nar/gkg595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y. Han, B. Kim, U. Cho, I.S. Park, S.I. Kim, D.N. Dhanasekaran, B.K. Tsang, Y.S. Song, Mitochondrial fission causes cisplatin resistance under hypoxic conditions via ROS in ovarian cancer cells. Oncogene 38, 7089–7105 (2019). https://doi.org/10.1038/s41388-019-0949-5

    Article  CAS  PubMed  Google Scholar 

  33. D. Trachootham, W. Lu, M.A. Ogasawara, R.D. Nilsa, P. Huang, Redox regulation of cell survival. Antioxid. Redox. Signal 10, 1343–1374 (2008). https://doi.org/10.1089/ars.2007.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S.H. Moon, C.H. Huang, S.L. Houlihan, K. Regunath, W.A. Freed-Pastor, D.F. Morris JPt, Tschaharganeh, E.R. Kastenhuber, A.M. Barsotti, R. Culp-Hill, W. Xue, Y.J. Ho, T. Baslan, X. Li, A. Mayle, E. de Stanchina, L. Zender, D.R. Tong, A. D’Alessandro, S.W. Lowe, C. Prives, p53 represses the Mevalonate pathway to Mediate Tumor suppression. Cell 176(e519), 564–580 (2019). https://doi.org/10.1016/j.cell.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  35. L. Li, Y. Mao, L. Zhao, L. Li, J. Wu, M. Zhao, W. Du, L. Yu, P. Jiang, p53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis. Nature 567, 253–256 (2019). https://doi.org/10.1038/s41586-019-0996-7

    Article  CAS  PubMed  Google Scholar 

  36. L.M. Khachigian, The Yin and Yang of YY1 in tumor growth and suppression. Int. J. Cancer 143, 460–465 (2018). https://doi.org/10.1002/ijc.31255

    Article  CAS  PubMed  Google Scholar 

  37. Y. Shi, E. Seto, L.S. Chang, T. Shenk, Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein. Cell 67, 377–388 (1991). https://doi.org/10.1016/0092-8674(91)90189-6

    Article  CAS  PubMed  Google Scholar 

  38. K.H. Lee, S. Evans, T.Y. Ruan, A.B. Lassar, SMAD-mediated modulation of YY1 activity regulates the BMP response and cardiac-specific expression of a GATA4/5/6-dependent chick Nkx2.5 enhancer. Development 131, 4709–4723 (2004). https://doi.org/10.1242/dev.01344

    Article  CAS  PubMed  Google Scholar 

  39. S. Wu, H. Wang, Y. Li, Y. Xie, C. Huang, H. Zhao, M. Miyagishi, V. Kasim, Transcription factor YY1 promotes cell proliferation by directly activating the pentose phosphate pathway. Cancer Res. 78, 4549–4562 (2018). https://doi.org/10.1158/0008-5472.CAN-17-4047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Feng Zhang for supplying lenti-CRISPR v2 plasmid from addgene and the useful suggestion for plasmid extraction and lentivirus packaging.

Funding

This study was supported by funds from the National Natural Science Foundation of China (No. 82172920), National Natural Science Foundation for Young Scholars of China (No. 81902566) and Shanghai Jiaotong University Medical-Engineering Cross Research Fund (No. YG2019QNA53).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: J. Shao, L. Yao and X. Wang. Development of methodology: Z. Yuan, Yan. He and T. Shi. Acquisition of data: T. Shi and Z. Yuan. Analysis and interpretation of data: J. Shao, T. Shi, Z. Yuan, D. Zhang, X. Wang, and S. Chen. Writing, review, and/or revision of the manuscript: L. Yao, XJ. Wang and T. Shi. Administrative, technical, or material support: J. Shao, Z. Yuan, D. Zhang, and Y. He. Study supervision: X. Wang.

Corresponding authors

Correspondence to Linli Yao, Jialiang Shao or Xiang Wang.

Ethics declarations

Ethical approval

All procedures related to patients were carried out in accordance with International Ethical Guidelines for Biomedical Research Involving Human Subjects (CIOMS). The study was approved by the Research Ethics Committee of Shanghai General Hospital, Shanghai Jiao Tong University. All the animal studies were approved by the Institutional Committee for Animal Care and Use of Laboratory Animals prepared by Shanghai Jiao Tong University.

Consent for publication

All authors had agreed to publish this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.40 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, T., Yuan, Z., He, Y. et al. Competition between p53 and YY1 determines PHGDH expression and malignancy in bladder cancer. Cell Oncol. 46, 1457–1472 (2023). https://doi.org/10.1007/s13402-023-00823-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00823-8

Keywords

Navigation