Skip to main content

Advertisement

Log in

RRM2 as a novel prognostic and therapeutic target of NF1-associated MPNST

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas that typically develop in the setting of neurofibromatosis type 1 (NF1) and cause significant morbidity. Conventional therapies are often ineffective for MPNSTs. Ribonucleotide reductase subunit M2 (RRM2) is involved in DNA synthesis and repair, and is overexpressed in multiple cancers. However, its role in NF1-associated MPNSTs remains unknown. Our objective was to determine the therapeutic and prognostic potential of RRM2 in NF1-associated MPNSTs.

Methods

Identification of hub genes was performed by using NF1-associated MPNST microarray datasets. We detected RRM2 expression by immunochemical staining in an MPNST tissue microarray, and assessed the clinical and prognostic significance of RRM2 in an MPNST cohort. RRM2 knockdown and the RRM2 inhibitor Triapine were used to assess cell proliferation and apoptosis in NF1-associated MPNST cells in vitro and in vivo. The underlying mechanism of RRM2 in NF1-associated MPNST was revealed by transcriptome analysis.

Results

RRM2 is a key hub gene and its expression is significantly elevated in NF1-associated MPNST. We revealed that high RRM2 expression accounted for a larger proportion of NF1-associated MPNSTs and confirmed the correlation of high RRM2 expression with poor overall survival. Knockdown of RRM2 inhibited NF1-associated MPNST cell proliferation and promoted apoptosis and S-phase arrest. The RRM2 inhibitor Triapine displayed dose-dependent inhibitory effects in vitro and induced significant tumor growth reduction in vivo in NF1-associated MPNST. Analysis of transcriptomic changes induced by RRM2 knockdown revealed suppression of the AKT-mTOR signaling pathway. Overexpression of RRM2 activates the AKT pathway to promote NF1-associated MPNST cell proliferation.

Conclusions

RRM2 expression is significantly elevated in NF1-associated MPNST and that high RRM2 expression correlates with poorer outcomes. RRM2 acts as an integral part in the promotion of NF1-associated MPNST cell proliferation via the AKT-mTOR signaling pathway. Inhibition of RRM2 may be a promising therapeutic strategy for NF1-associated MPNST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw sequencing data generated in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/geo/GSE213988.

Abbreviations

NF1:

Neurofibromatosis Type 1

MPNST:

Malignant Peripheral Nerve Sheath Tumor

RRM2:

Ribonucleotide reductase subunit M2

STS:

Soft-tissue sarcoma; plexiform neurofibromas (PNF)

RNR:

Ribonucleotide reductase

dNTP:

Deoxyribonucleotides

HNSCC:

Head and neck squamous cell carcinoma

DEG:

Differentially expressed gene

qPCR:

Quantitative Polymerase Chain Reaction

RNA-seq:

RNA sequencing

SD:

Standard deviation

CHK1:

Checkpoint Kinase 1

References

  1. L.M.N. Wu, Y. Deng, J. Wang, C. Zhao, J. Wang, R. Rao, L. Xu, W. Zhou, K. Choi, T.A. Rizvi et al., Programming of Schwann cells by Lats1/2-TAZ/YAP signaling drives malignant peripheral nerve sheath tumorigenesis. Cancer Cell 33, (2018). https://doi.org/10.1016/j.ccell.2018.01.005

  2. V. Kochat, A.T. Raman, S.M. Landers, M. Tang, J. Schulz, C. Terranova, J.P. Landry, A.D. Bhalla, H.C. Beird, C.-C. Wu et al., Enhancer reprogramming in PRC2-deficient malignant peripheral nerve sheath tumors induces a targetable de-differentiated state. Acta Neuropathol. 142, 565–590 (2021). https://doi.org/10.1007/s00401-021-02341-z

    Article  CAS  PubMed  Google Scholar 

  3. K.L. Watson, G.A. Al Sannaa, C.M. Kivlin, D.R. Ingram, S.M. Landers, C.L. Roland, J.N. Cormier, K.K. Hunt, B.W. Feig, B. Ashleigh Guadagnolo et al., Patterns of recurrence and survival in sporadic, neurofibromatosis Type 1-associated, and radiation-associated malignant peripheral nerve sheath tumors. J. Neurosurg. 126, 319–329 (2017). https://doi.org/10.3171/2015.12.JNS152443

    Article  PubMed  Google Scholar 

  4. D.T. Miller, D. Freedenberg, E. Schorry, N.J. Ullrich, D. Viskochil and B.R. Korf, Health supervision for children with neurofibromatosis type 1. Pediatrics 143, (2019). https://doi.org/10.1542/peds.2019-0660

  5. D. Bradford, A. Kim, Current treatment options for malignant peripheral nerve sheath tumors. Curr. Treat. Options Oncol. 16, 328 (2015). https://doi.org/10.1007/s11864-015-0328-6

    Article  PubMed  Google Scholar 

  6. A. Hassan, R.C. Pestana, A. Parkes, Systemic options for malignant peripheral nerve sheath tumors. Curr. Treat. Options Oncol. 22, 33 (2021). https://doi.org/10.1007/s11864-021-00830-7

    Article  PubMed  Google Scholar 

  7. B.L. Greene, G. Kang, C. Cui, M. Bennati, D.G. Nocera, C.L. Drennan, J. Stubbe, Ribonucleotide reductases: structure, chemistry, and metabolism suggest new therapeutic targets. Annu. Rev. Biochem. 89, 45–75 (2020). https://doi.org/10.1146/annurev-biochem-013118-111843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Zhang, Y. Weng, Z. Cao, S. Guo, B. Hu, M. Lu, W. Guo, T. Yang, C. Li, X. Yang, Y. Huang, ROS-Activatable siRNA-Engineered Polyplex for NIR-Triggered synergistic cancer treatment. ACS Appl. Mater. Interfaces 12, 32289–32300 (2020). https://doi.org/10.1021/acsami.0c06614

    Article  CAS  PubMed  Google Scholar 

  9. V. D’Angiolella, V. Donato, F.M. Forrester, Y.-T. Jeong, C. Pellacani, Y. Kudo, A. Saraf, L. Florens, M.P. Washburn, M. Pagano, Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149, 1023–1034 (2012). https://doi.org/10.1016/j.cell.2012.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. Nunes, L. Depestel, L. Mus, K.M. Keller, L. Delhaye, A. Louwagie, M. Rishfi, A. Whale, N. Kara, S.R. Andrews et al., RRM2 enhances MYCN-driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition. Sci. Adv. 8, eabn1382 (2022). https://doi.org/10.1126/sciadv.abn1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. B. Tang, W. Xu, Y. Wang, J. Zhu, H. Wang, J. Tu, Q. Weng, C. Kong, Y. Yang, R. Qiu, Z. Zhao, M. Xu, J. Ji, Identification of critical ferroptosis regulators in lung adenocarcinoma that RRM2 facilitates tumor immune infiltration by inhibiting ferroptotic death. Clin. Immunol. 232, 108872 (2021). https://doi.org/10.1016/j.clim.2021.108872

    Article  CAS  PubMed  Google Scholar 

  12. Q. Liu, L. Guo, H. Qi, M. Lou, R. Wang, B. Hai, K. Xu, L. Zhu, Y. Ding, C. Li, L. Xie, J. Shen, X. Xiang, J. Shao, A MYBL2 complex for RRM2 transactivation and the synthetic effect of MYBL2 knockdown with WEE1 inhibition against colorectal cancer. Cell Death Dis. 12, 683 (2021). https://doi.org/10.1038/s41419-021-03969-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. C. Kretschmer, A. Sterner-Kock, F. Siedentopf, W. Schoenegg, P.M. Schlag, W. Kemmner, Identification of early molecular markers for breast cancer. Mol. Cancer 10, 15 (2011). https://doi.org/10.1186/1476-4598-10-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Zheng, X. Wang, Y.-H. Weng, X. Jin, J.-L. Ji, L. Guo, B. Hu, N. Liu, Q. Cheng, J. Zhang, H. Bai, T. Yang, X.-H. Xia, H.-Y. Zhang, S. Gao, Y. Huang, siRNA knockdown of RRM2 effectively suppressed pancreatic tumor growth alone or synergistically with doxorubicin. Mol. Ther. Nucleic Acids 12, 805–816 (2018). https://doi.org/10.1016/j.omtn.2018.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. X. Xu, J.L. Page, J.A. Surtees, H. Liu, S. Lagedrost, Y. Lu, R. Bronson, E. Alani, A.Y. Nikitin, R.S. Weiss, Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms. Cancer Res. 68, 2652–2660 (2008). https://doi.org/10.1158/0008-5472.CAN-07-5873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Li, J. Zheng, S. Chen, B. Huang, G. Li, Z. Feng, J. Wang, S. Xu, RRM2 promotes the progression of human glioblastoma. J. Cell Physiol. 233, 6759–6767 (2018). https://doi.org/10.1002/jcp.26529

    Article  CAS  PubMed  Google Scholar 

  17. M.A. Rahman, A.R.M.R. Amin, D. Wang, L. Koenig, S. Nannapaneni, Z. Chen, Z. Wang, G. Sica, X. Deng, Z.G. Chen, D.M. Shin, RRM2 regulates Bcl-2 in head and neck and lung cancers: a potential target for cancer therapy. Clin. Cancer Res. 19, 3416–3428 (2013). https://doi.org/10.1158/1078-0432.CCR-13-0073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S.E. Huff, J.M. Winter, C.G. Dealwis, Inhibitors of the cancer target ribonucleotide reductase, past and present. Biomolecules 12, (2022). https://doi.org/10.3390/biom12060815

  19. D. Szklarczyk, A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N.T. Doncheva, M. Legeay, T. Fang, P. Bork, L.J. Jensen, C. von Mering, The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021). https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  PubMed  Google Scholar 

  20. P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. C.-H. Chin, S.-H. Chen, H.-H. Wu, C.-W. Ho, M.-T. Ko, C.-Y. Lin, cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8 Suppl 4, S11 (2014). https://doi.org/10.1186/1752-0509-8-S4-S11

    Article  PubMed  Google Scholar 

  22. C. Guzmán, M. Bagga, A. Kaur, J. Westermarck, D. Abankwa, ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 9, e92444 (2014). https://doi.org/10.1371/journal.pone.0092444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal (2011). https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  24. D. Kim, B. Langmead, S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015). https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Pertea, G.M. Pertea, C.M. Antonescu, T.-C. Chang, J.T. Mendell, S.L. Salzberg, StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015). https://doi.org/10.1038/nbt.3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  27. X. Liu, H. Zhang, L. Lai, X. Wang, S. Loera, L. Xue, H. He, K. Zhang, S. Hu, Y. Huang, R.A. Nelson, B. Zhou, L. Zhou, P. Chu, S. Zhang, S. Zheng, Y. Yen, Ribonucleotide reductase small subunit M2 serves as a prognostic biomarker and predicts poor survival of colorectal cancers. Clin. Sci. (Lond) 124, 567–578 (2013). https://doi.org/10.1042/CS20120240

    Article  CAS  PubMed  Google Scholar 

  28. L.-M. Wang, F.-F. Lu, S.-Y. Zhang, R.-Y. Yao, X.-M. Xing, Z.-M. Wei, Overexpression of catalytic subunit M2 in patients with ovarian cancer. Chin. Med. J. (Engl) 125, 2151–2156 (2012)

    CAS  PubMed  Google Scholar 

  29. A. Pemov, H. Li, W. Presley, M.R. Wallace, D.T. Miller, Genetics of human malignant peripheral nerve sheath tumors. Neurooncol. Adv. 2, i50–i61 (2020). https://doi.org/10.1093/noajnl/vdz049

    Article  PubMed  Google Scholar 

  30. J.F. Longo, S.M. Weber, B.P. Turner-Ivey, S.L. Carroll, Recent advances in the diagnosis and pathogenesis of neurofibromatosis Type 1 (NF1)-associated peripheral nervous system neoplasms. Adv. Anat. Pathol. 25, 353–368 (2018). https://doi.org/10.1097/PAP.0000000000000197

    Article  PubMed  PubMed Central  Google Scholar 

  31. L.-L. Ge, M.-Y. Xing, H.-B. Zhang, Q.-F. Li, Z.-C. Wang, Role of nerves in neurofibromatosis type 1-related nervous system tumors. Cell Oncol. (Dordr) 45, 1137–1153 (2022). https://doi.org/10.1007/s13402-022-00723-3

    Article  CAS  PubMed  Google Scholar 

  32. X. Jiang, Y. Li, N. Zhang, Y. Gao, L. Han, S. Li, J. Li, X. Liu, Y. Gong, C. Xie, RRM2 silencing suppresses malignant phenotype and enhances radiosensitivity via activating cGAS/STING signaling pathway in lung adenocarcinoma. Cell Biosci. 11, 74 (2021). https://doi.org/10.1186/s13578-021-00586-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Endo, H. Yamamoto, N. Setsu, K. Kohashi, Y. Takahashi, T. Ishii, K.-I. Iida, Y. Matsumoto, M. Hakozaki et al., Prognostic significance of AKT/mTOR and MAPK pathways and antitumor effect of mTOR inhibitor in NF1-related and sporadic malignant peripheral nerve sheath tumors. Clin. Cancer Res. 19, 450–461 (2013). https://doi.org/10.1158/1078-0432.CCR-12-1067

    Article  CAS  PubMed  Google Scholar 

  34. S. Nagabushan, L.M.S. Lau, P. Barahona, M. Wong, A. Sherstyuk, G.M. Marshall, V. Tyrrell, E.A. Wegner, P.G. Ekert, M.J. Cowley, C. Mayoh, T.N. Trahair, P. Crowe, A. Anazodo, D.S. Ziegler, Efficacy of MEK inhibition in a recurrent malignant peripheral nerve sheath tumor. NPJ Precis. Oncol. 5, 9 (2021). https://doi.org/10.1038/s41698-021-00145-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. C. Gregorian, J. Nakashima, S.M. Dry, P.L. Nghiemphu, K.B. Smith, Y. Ao, J. Dang, G. Lawson, I.K. Mellinghoff, P.S. Mischel, M. Phelps, L.F. Parada, X. Liu, M.V. Sofroniew, F.C. Eilber, H. Wu, PTEN dosage is essential for neurofibroma development and malignant transformation. Proc. Natl. Acad. Sci. U. S. A. 106, 19479–19484 (2009). https://doi.org/10.1073/pnas.0910398106

    Article  PubMed  PubMed Central  Google Scholar 

  36. J. Shan, Z. Wang, Q. Mo, J. Long, Y. Fan, L. Cheng, T. Zhang, X. Liu, X. Wang, Ribonucleotide reductase M2 subunit silencing suppresses tumorigenesis in pancreatic cancer via inactivation of PI3K/AKT/mTOR pathway. Pancreatology 22, 401–413 (2022). https://doi.org/10.1016/j.pan.2022.03.002

    Article  CAS  PubMed  Google Scholar 

  37. S. Zhang, L. Yan, C. Cui, Z. Wang, J. Wu, A. Lv, M. Zhao, B. Dong, W. Zhang, X. Guan, X. Tian, C. Hao, Downregulation of RRM2 Attenuates Retroperitoneal Liposarcoma Progression via the Akt/mTOR/4EBP1 Pathway: Clinical, Biological, and Therapeutic Significance. Onco. Targets Ther. 13, 6523–6537 (2020). https://doi.org/10.2147/OTT.S246613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Y.Z. Mazzu, J. Armenia, G. Chakraborty, Y. Yoshikawa, S.A.A. Coggins, S. Nandakumar, T.A. Gerke et al., A novel mechanism driving poor-prognosis prostate cancer: overexpression of the DNA Repair Gene, Ribonucleotide Reductase Small Subunit M2 (RRM2). Clin. Cancer Res. 25, 4480–4492 (2019). https://doi.org/10.1158/1078-0432.CCR-18-4046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Aye, M. Li, M.J.C. Long, R.S. Weiss, Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34, 2011–2021 (2015). https://doi.org/10.1038/onc.2014.155

    Article  CAS  PubMed  Google Scholar 

  40. J. Shao, X. Liu, L. Zhu, Y. Yen, Targeting ribonucleotide reductase for cancer therapy. Expert Opin. Ther. Targets 17, 1423–1437 (2013). https://doi.org/10.1517/14728222.2013.840293

    Article  CAS  PubMed  Google Scholar 

  41. Y. Zhan, L. Jiang, X. Jin, S. Ying, Z. Wu, L. Wang, W. Yu, J. Tong, L. Zhang, Y. Lou, Y. Qiu, Inhibiting RRM2 to enhance the anticancer activity of chemotherapy. Biomed. Pharmacother. 133, 110996 (2021). https://doi.org/10.1016/j.biopha.2020.110996

    Article  CAS  PubMed  Google Scholar 

  42. S. Ohmura, A. Marchetto, M.F. Orth, J. Li, S. Jabar, A. Ranft, E. Vinca, K. Ceranski, M.J. Carreño-Gonzalez et al., Translational evidence for RRM2 as a prognostic biomarker and therapeutic target in Ewing sarcoma. Mol. Cancer 20, 97 (2021). https://doi.org/10.1186/s12943-021-01393-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. L. Dai, Z. Lin, J. Qiao, Y. Chen, E.K. Flemington, Z. Qin, Ribonucleotide reductase represents a novel therapeutic target in primary effusion lymphoma. Oncogene 36, 5068–5074 (2017). https://doi.org/10.1038/onc.2017.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Y. Yen, K. Margolin, J. Doroshow, M. Fishman, B. Johnson, C. Clairmont, D. Sullivan, M. Sznol, A phase I trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone in combination with gemcitabine for patients with advanced cancer. Cancer Chemother Pharmacol 54, 331–342 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. C.A. Kunos, T. Radivoyevitch, S. Waggoner, R. Debernardo, K. Zanotti, K. Resnick, N. Fusco, R. Adams, R. Redline, P. Faulhaber, A. Dowlati, Radiochemotherapy plus 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) in advanced-stage cervical and vaginal cancers. Gynecol. Oncol. 130, 75–80 (2013). https://doi.org/10.1016/j.ygyno.2013.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Vincent Keng and Prof. Jilong Yang for providing all the MPNST cell lines.

Funding

This work was supported by grants from National Natural Science Foundation of China (82202470; 82102344; 82172228); Shanghai Rising Star Program supported by Science and Technology Commission of Shanghai Municipality (20QA1405600); Natural Science Foundation of Shanghai (22ZR1422300); Innovative research team of high-level local universities in Shanghai (SHSMU-ZDCX20210400); Clinical Research Plan of SHDC (SHDC2020CR1019B); Shanghai Clinical Research Center of Plastic and Reconstructive Surgery supported by Science and Technology Commission of Shanghai Municipality (Grant No. 22MC1940300).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: M.-H.C, Z.W., and Q.Y.; Acquisition of data: M.-H.C, R.A., Y.L., H.L. Y.G., W.W., C.W., Z.G., and M.L.;Analysis and interpretation: M.-H.C, R.A., and Y.L;Writing, re-view of the manuscript: M.-H.C, Z.W., and Q.L.; All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Qingfeng Li or Zhichao Wang.

Ethics declarations

Ethics approval statement

The study involving human participants was reviewed and approved by the Ethics Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine. Informed consent was obtained from patients under institutional review board protocols. The animal study was reviewed and approved by the Ethics Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine.

Competing interest statement

The authors declare no conflicts of interest associated with this publication.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1020 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, MH., Aimaier, R., Yu, Q. et al. RRM2 as a novel prognostic and therapeutic target of NF1-associated MPNST. Cell Oncol. 46, 1399–1413 (2023). https://doi.org/10.1007/s13402-023-00819-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00819-4

Keywords

Navigation