Skip to main content
Log in

The SLITRK4-CNPY3 axis promotes liver metastasis of gastric cancer by enhancing the endocytosis and recycling of TrkB in tumour cells

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Gastric cancer (GC) is a malignant tumour with high mortality, and liver metastasis is one of the main causes of poor prognosis. SLIT- and NTRK-like family member 4 (SLITRK4) plays an important role in the nervous system, such as synapse formation. Our study aimed to explore the functional role of SLITRK4 in GC and liver metastasis.

Methods

The mRNA level of SLITRK4 was evaluated using publicly available transcriptome GEO datasets and Renji cohort. The protein level of SLITRK4 in the tissue microarray of GC was observed using immunohistochemistry. Cell Counting Kit-8, colony formation, transwell migration assays in vitro and mouse model of liver metastasis in vivo was performed to investigate the functional roles of SLITRK4 in GC. Bioinformatics predictions and Co-IP experiments were applied to screen and identify SLITRK4-binding proteins. Western blot was performed to detect Tyrosine Kinase receptor B (TrkB)-related signaling molecules.

Results

By comparing primary and liver metastases from GC, SLITRK4 was found to be upregulated in tissues of GC with liver metastasis and to be closely related to poor clinical prognosis. SLITRK4 knockdown significantly abrogated the growth, invasion, and metastasis of GC in vitro and in vivo. Further study revealed that SLITRK4 could interact with Canopy FGF Signalling Regulator 3 (CNPY3), thus enhancing TrkB- related signaling by promoting the endocytosis and recycling of the TrkB receptor.

Conclusion

In conclusion, the CNPY3-SLITRK4 axis contributes to liver metastasis of GC according to the TrkB-related signaling pathway. which may be a therapeutic target for the treatment of GC with liver metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The Gene Expression Omnibus (GEO) datasets involved in the study include GSE65801 and GSE30601. GSE65801 contains gene expression microarray analyses of 32 GC tissues and 32 paired noncancerous tissues, while GSE30601 contains genome-wide DNA methylation profiles of 203 GC tissues and 94 paired noncancerous tissues. Transcriptomic data from the PRJNA555812 project stored in the Sequence Read Archive (SRA) were used to analyse transcriptional changes in liver metastasis of gastric cancer. The Renji Cohort used in our study comprised 69 GC liver metastatic tissues collected from 2005 to 2011; data collected also included RNA sequencing analyses, tissue microarrays, and corresponding retrospective analyses.

References

  1. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2021. CA Cancer J. Clin. 71(1), 7–33 (2021)

    PubMed  Google Scholar 

  2. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)

    PubMed  Google Scholar 

  3. E.C. Smyth, M. Nilsson, H.I. Grabsch, N.C.T. van Grieken, F. Lordick, Gastric cancer. Lancet 396(10251), 635–648 (2020)

    CAS  PubMed  Google Scholar 

  4. D.I. Tsilimigras, P. Brodt, P.A. Clavien, R.J. Muschel, M.I. D’Angelica, I. Endo, R.W. Parks, M. Doyle, E. de Santibañes, T.M. Pawlik, Liver metastases. Nat. Rev. Dis. Primers 7(1), 27 (2021)

    PubMed  Google Scholar 

  5. P. Brodt, Role of the microenvironment in liver metastasis: From pre- to prometastatic niches. Clin. Cancer Res. 22(24), 5971–5982 (2016)

    CAS  PubMed  Google Scholar 

  6. Japanese Gastric Cancer, A, Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer 24(1), 1–21 (2021)

    Google Scholar 

  7. K. Muro, E. Van Cutsem, Y. Narita, G. Pentheroudakis, E. Baba, J. Li, M.H. Ryu, W.I.W. Zamaniah, W.P. Yong, K.H. Yeh, K. Kato, Z. Lu, B.C. Cho, I.M. Nor, M. Ng, L.T. Chen, T.E. Nakajima, K. Shitara, H. Kawakami, T. Tsushima, T. Yoshino, F. Lordick, E. Martinelli, E.C. Smyth, D. Arnold, H. Minami, J. Tabernero, J.Y. Douillard, Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with metastatic gastric cancer: A JSMO-ESMO initiative endorsed by CSCO, KSMO, MOS SSO and TOS. Ann. Oncol. 30(1), 19–33 (2019)

    CAS  PubMed  Google Scholar 

  8. E.C. Smyth, M. Verheij, W. Allum, D. Cunningham, A. Cervantes, D. Arnold, E.G. Committee, Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 27(suppl 5), v38–v49 (2016)

    CAS  PubMed  Google Scholar 

  9. S.Y. Won, P. Lee, H.M. Kim, Synaptic organizer: Slitrks and type IIa receptor protein tyrosine phosphatases. Curr. Opin. Struct. Biol. 54, 95–103 (2019)

    CAS  PubMed  Google Scholar 

  10. H. Kang, K.A. Han, S.Y. Won, H.M. Kim, Y.H. Lee, J. Ko, J.W. Um, Slitrk missense mutations associated with neuropsychiatric disorders distinctively impair slitrk trafficking and synapse formation. Front. Mol. Neurosci. 9, 104 (2016)

    PubMed  PubMed Central  Google Scholar 

  11. C. Salesse, J. Charest, H. Doucet-Beaupré, A.M. Castonguay, S. Labrecque, P. De Koninck, M. Lévesque, Opposite control of excitatory and inhibitory synapse formation by slitrk2 and slitrk5 on dopamine neurons modulates hyperactivity behavior. Cell Rep. 30(7), 2374-2386.e5 (2020)

    CAS  PubMed  Google Scholar 

  12. W. Liu, X. Zhang, Z. Deng, G. Li, R. Zhang, Z. Yang, F. Che, S. Liu, H. Li, The role of SLITRK6 in the pathogenesis of Tourette syndrome: From the conclusion of a family-based study in the Chinese Han population. J. Gene Med. 22(6), e3173 (2020)

    CAS  PubMed  Google Scholar 

  13. C.C. Proenca, K.P. Gao, S.V. Shmelkov, S. Rafii, F.S. Lee, Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends Neurosci. 34(3), 143–153 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. J.W. Um, K.H. Kim, B.S. Park, Y. Choi, D. Kim, C.Y. Kim, S.J. Kim, M. Kim, J.S. Ko, S.G. Lee, G. Choii, J. Nam, W.D. Heo, E. Kim, J.O. Lee, J. Ko, H.M. Kim, Structural basis for LAR-RPTP/Slitrk complex-mediated synaptic adhesion. Nat. Commun. 5, 5423 (2014)

    CAS  PubMed  Google Scholar 

  15. S.Y. Won, C.Y. Kim, D. Kim, J. Ko, J.W. Um, S.B. Lee, M. Buck, E. Kim, W.D. Heo, J.O. Lee, H.M. Kim, LAR-RPTP clustering is modulated by competitive binding between synaptic adhesion partners and heparan sulfate. Front. Mol. Neurosci. 10, 327 (2017)

    PubMed  PubMed Central  Google Scholar 

  16. Y.S. Yim, Y. Kwon, J. Nam, H.I. Yoon, K. Lee, D.G. Kim, E. Kim, C.H. Kim, J. Ko, Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases. Proc. Natl. Acad. Sci. U. S. A. 110(10), 4057–4062 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. L.P. Hu, W. Huang, X. Wang, C. Xu, W.T. Qin, D. Li, G. Tian, Q. Li, Y. Zhou, S. Chen, H.Z. Nie, Y. Hao, J. Song, X.L. Zhang, J. Sundquist, K. Sundquist, J. Li, S.H. Jiang, Z.G. Zhang, J. Ji, Terbinafine prevents colorectal cancer growth by inducing dNTP starvation and reducing immune suppression. Mol. Ther. 30(10), 3284–3299 (2022)

    CAS  PubMed  Google Scholar 

  18. G. Yang, L. Huang, H. Jia, B. Aikemu, S. Zhang, Y. Shao, H. Hong, G. Yesseyeva, C. Wang, S. Li, J. Sun, M. Zheng, J. Ma, NDRG1 enhances the sensitivity of cetuximab by modulating EGFR trafficking in colorectal cancer. Oncogene 40(41), 5993–6006 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. X. Huang, Q. Ye, M. Chen, A. Li, W. Mi, Y. Fang, Y.Y. Zaytseva, K.L. O’Connor, C.W. Vander Kooi, S. Liu, Q.B. She, N-glycosylation-defective splice variants of neuropilin-1 promote metastasis by activating endosomal signals. Nat. Commun. 10(1), 3708 (2019)

    PubMed  PubMed Central  Google Scholar 

  20. H. Li, B. Yu, J. Li, L. Su, M. Yan, J. Zhang, C. Li, Z. Zhu, B. Liu, Characterization of differentially expressed genes involved in pathways associated with gastric cancer. PLoS ONE 10(4), e0125013 (2015)

    PubMed  PubMed Central  Google Scholar 

  21. H. Zouridis, N. Deng, T. Ivanova, Y. Zhu, B. Wong, D. Huang, Y.H. Wu, Y. Wu, I.B. Tan, N. Liem, V. Gopalakrishnan, Q. Luo, J. Wu, M. Lee, W.P. Yong, L.K. Goh, B.T. Teh, S. Rozen, P. Tan, Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci. Transl. Med. 4(156), 156ra140 (2012)

    PubMed  Google Scholar 

  22. Z. Lei, I.B. Tan, K. Das, N. Deng, H. Zouridis, S. Pattison, C. Chua, Z. Feng, Y.K. Guan, C.H. Ooi, T. Ivanova, S. Zhang, M. Lee, J. Wu, A. Ngo, S. Manesh, E. Tan, B.T. Teh, J.B. So, L.K. Goh, A. Boussioutas, T.K. Lim, H. Flotow, P. Tan, S.G. Rozen, Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology 145(3), 554–565 (2013)

    CAS  PubMed  Google Scholar 

  23. J. Kurashige, T. Hasegawa, A. Niida, K. Sugimachi, N. Deng, K. Mima, R. Uchi, G. Sawada, Y. Takahashi, H. Eguchi, M. Inomata, S. Kitano, T. Fukagawa, M. Sasako, H. Sasaki, S. Sasaki, M. Mori, K. Yanagihara, H. Baba, S. Miyano, P. Tan, K. Mimori, Integrated molecular profiling of human gastric cancer identifies DDR2 as a potential regulator of peritoneal dissemination. Sci. Rep. 6, 22371 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Q. Li, C.C. Zhu, B. Ni, Z.Z. Zhang, S.H. Jiang, L.P. Hu, X. Wang, X.X. Zhang, P.Q. Huang, Q. Yang, J. Li, J.R. Gu, J. Xu, K.Q. Luo, G. Zhao, Z.G. Zhang, Lysyl oxidase promotes liver metastasis of gastric cancer via facilitating the reciprocal interactions between tumor cells and cancer associated fibroblasts. EBioMedicine 49, 157–171 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Z. Jin, Y. Lu, X. Wu, T. Pan, Z. Yu, J. Hou, A. Wu, J. Li, Z. Yang, C. Li, M. Yan, C. Yan, Z. Zhu, B. Liu, W. Qiu, L. Su, The cross-talk between tumor cells and activated fibroblasts mediated by lactate/BDNF/TrkB signaling promotes acquired resistance to anlotinib in human gastric cancer. Redox Biol. 46, 102076 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. B. Choi, E.J. Lee, M.K. Shin, Y.S. Park, M.H. Ryu, S.M. Kim, E.Y. Kim, H.K. Lee, E.J. Chang, Upregulation of brain-derived neurotrophic factor in advanced gastric cancer contributes to bone metastatic osteolysis by inducing long pentraxin 3. Oncotarget 7(34), 55506–55517 (2016)

    PubMed  PubMed Central  Google Scholar 

  27. Y. Okugawa, K. Tanaka, Y. Inoue, M. Kawamura, A. Kawamoto, J. Hiro, S. Saigusa, Y. Toiyama, M. Ohi, K. Uchida, Y. Mohri, M. Kusunoki, Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br. J. Cancer 108(1), 121–130 (2013)

    CAS  PubMed  Google Scholar 

  28. M. Song, J. Giza, C.C. Proenca, D. Jing, M. Elliott, I. Dincheva, S.V. Shmelkov, J. Kim, R. Schreiner, S.H. Huang, E. Castren, R. Prekeris, B.L. Hempstead, M.V. Chao, J.B. Dictenberg, S. Rafii, Z.Y. Chen, E. Rodriguez-Boulan, F.S. Lee, Slitrk5 mediates BDNF-dependent TrkB receptor trafficking and signaling. Dev. Cell. 33(6), 690–702 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Paget, The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8(2), 98–101 (1989)

    CAS  PubMed  Google Scholar 

  30. J. Massagué, A.C. Obenauf, Metastatic colonization by circulating tumour cells. Nature 529(7586), 298–306 (2016)

    PubMed  PubMed Central  Google Scholar 

  31. H. Peinado, H. Zhang, I.R. Matei, B. Costa-Silva, A. Hoshino, G. Rodrigues, B. Psaila, R.N. Kaplan, J.F. Bromberg, Y. Kang, M.J. Bissell, T.R. Cox, A.J. Giaccia, J.T. Erler, S. Hiratsuka, C.M. Ghajar, D. Lyden, Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17(5), 302–317 (2017)

    CAS  PubMed  Google Scholar 

  32. R.N. Kaplan, R.D. Riba, S. Zacharoulis, A.H. Bramley, L. Vincent, C. Costa, D.D. MacDonald, D.K. Jin, K. Shido, S.A. Kerns, Z. Zhu, D. Hicklin, Y. Wu, J.L. Port, N. Altorki, E.R. Port, D. Ruggero, S.V. Shmelkov, K.K. Jensen, S. Rafii, D. Lyden, VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069), 820–827 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Hoshino, B. Costa-Silva, T.L. Shen, G. Rodrigues, A. Hashimoto, M. Tesic Mark, H. Molina, S. Kohsaka, A. Di Giannatale, S. Ceder, S. Singh, C. Williams, N. Soplop, K. Uryu, L. Pharmer, T. King, L. Bojmar, A.E. Davies, Y. Ararso, T. Zhang, H. Zhang, J. Hernandez, J.M. Weiss, V.D. Dumont-Cole, K. Kramer, L.H. Wexler, A. Narendran, G.K. Schwartz, J.H. Healey, P. Sandstrom, K.J. Labori, E.H. Kure, P.M. Grandgenett, M.A. Hollingsworth, M. de Sousa, S. Kaur, M. Jain, K. Mallya, S.K. Batra, W.R. Jarnagin, M.S. Brady, O. Fodstad, V. Muller, K. Pantel, A.J. Minn, M.J. Bissell, B.A. Garcia, Y. Kang, V.K. Rajasekhar, C.M. Ghajar, I. Matei, H. Peinado, J. Bromberg, D. Lyden, Tumour exosome integrins determine organotropic metastasis. Nature 527(7578), 329–335 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. N.J. Birkbak, N. McGranahan, Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37(1), 8–19 (2020)

    CAS  PubMed  Google Scholar 

  35. B. Ni, X. He, Y. Zhang, Z. Wang, Z. Dong, X. Xia, G. Zhao, H. Cao, C. Zhu, Q. Li, J. Liu, H. Chen, Z. Zhang, Tumor-associated macrophage-derived GDNF promotes gastric cancer liver metastasis via a GFRA1-modulated autophagy flux. Cell. Oncol. (Dordr) (2023). https://doi.org/10.1007/s13402-022-00751-z

  36. B. Liu, Y. Yang, Z. Qiu, M. Staron, F. Hong, Y. Li, S. Wu, Y. Li, B. Hao, R. Bona, D. Han, Z. Li, Folding of Toll-like receptors by the HSP90 paralogue gp96 requires a substrate-specific cochaperone. Nat. Commun. 1(6), 79 (2010)

    PubMed  Google Scholar 

  37. C. Morales, Z. Li, Drosophila canopy b is a cochaperone of glycoprotein 93. J. Biol. Chem. 292(16), 6657–6666 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Faraz, C. Herdenberg, C. Holmlund, R. Henriksson, H. Hedman, A protein interaction network centered on leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) regulates growth factor receptors. J. Biol. Chem. 293(9), 3421–3435 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. W. Zou, X. Hu, L. Jiang, Advances in regulating tumorigenicity and metastasis of cancer through TrkB signaling. Curr. Cancer Drug Targets 20(10), 779–788 (2020)

    CAS  PubMed  Google Scholar 

  40. Y. Yuan, H.Q. Ye, Q.C. Ren, Proliferative role of BDNF/TrkB signaling is associated with anoikis resistance in cervical cancer. Oncol. Rep. 40(2), 621–634 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. L. Liu, S.W. Li, W. Yuan, J. Tang, Y. Sang, Downregulation of SUN2 promotes metastasis of colon cancer by activating BDNF/TrkB signalling by interacting with SIRT1. J. Pathol. 254(5), 531–542 (2021)

    CAS  PubMed  Google Scholar 

  42. G. B. Park, S. Choi, Y. S. Yoon, D. Kim, TrkB/C-induced HOXC6 activation enhances the ADAM8-mediated metastasis of chemoresistant colon cancer cells. Mol. Med. Rep. 23(6), 423 (2021)

  43. M. S. Kim, W. Jin, TrkB inhibits the BMP signaling-mediated growth inhibition of cancer cells. Cancers 12(8), 2095 (2020)

  44. T. Li, Y. Yu, Y. Song, X. Li, D. Lan, P. Zhang, Y. Xiao, Y. Xing, Activation of BDNF/TrkB pathway promotes prostate cancer progression via induction of epithelial-mesenchymal transition and anoikis resistance. FASEB J. 34(7), 9087–9101 (2020)

    CAS  PubMed  Google Scholar 

  45. M.J. Contreras-Zárate, N.L. Day, D.R. Ormond, V.F. Borges, S. Tobet, B. Gril, P.S. Steeg, D.M. Cittelly, Estradiol induces BDNF/TrkB signaling in triple-negative breast cancer to promote brain metastases. Oncogene 38(24), 4685–4699 (2019)

    PubMed  PubMed Central  Google Scholar 

  46. J. Delgado, E. Pean, D. Melchiorri, C. Migali, F. Josephson, H. Enzmann, F. Pignatti, The European Medicines Agency review of entrectinib for the treatment of adult or paediatric patients with solid tumours who have a neurotrophic tyrosine receptor kinase gene fusions and adult patients with non-small-cell lung cancer harbouring ROS1 rearrangements. ESMO Open 6(2), 100087 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. W. Yan, L. Zhang, F. Lv, M. Moccia, F. Carlomagno, C. Landry, M. Santoro, F. Gosselet, B. Frett, H.Y. Li, Discovery of pyrazolo-thieno[3,2-d]pyrimidinylamino-phenyl acetamides as type-II pan-tropomyosin receptor kinase (TRK) inhibitors: Design, synthesis, and biological evaluation. Eur. J. Med. Chem. 216, 113265 (2021)

    CAS  PubMed  Google Scholar 

  48. T. Jiang, G. Wang, Y. Liu, L. Feng, M. Wang, J. Liu, Y. Chen, L. Ouyang, Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta Pharm. Sin. B 11(2), 355–372 (2021)

    CAS  PubMed  Google Scholar 

  49. A. Miura, H. Sootome, N. Fujita, T. Suzuki, H. Fukushima, S. Mizuarai, N. Masuko, K. Ito, A. Hashimoto, Y. Uto, T. Sugimoto, H. Takahashi, M. Mitsuya, H. Hirai, TAS-119, a novel selective Aurora A and TRK inhibitor, exhibits antitumor efficacy in preclinical models with deregulated activation of the Myc, β-Catenin, and TRK pathways. Invest. New Drugs 39(3), 724–735 (2021)

    CAS  PubMed  Google Scholar 

  50. A.F. Farago, G.D. Demetri, Larotrectinib, a selective tropomyosin receptor kinase inhibitor for adult and pediatric tropomyosin receptor kinase fusion cancers. Future Oncol. (Lond. Engl.) 16(9), 417–425 (2020)

    CAS  Google Scholar 

  51. L. D’Agostino, Y. Nie, S. Goswami, K. Tong, S. Yu, S. Bandyopadhyay, J. Flores, X. Zhang, I. Balasubramanian, I. Joseph, R. Sakamori, V. Farrell, Q. Li, C.S. Yang, B. Gao, R.P. Ferraris, G. Yehia, E.M. Bonder, J.R. Goldenring, M.P. Verzi, L. Zhang, Y.T. Ip, N. Gao, Recycling endosomes in mature epithelia restrain tumorigenic signaling. Can. Res. 79(16), 4099–4112 (2019)

    CAS  Google Scholar 

  52. P.Y. Lin, Z.Z. Ma, M. Mahgoub, E.T. Kavalali, L.M. Monteggia, A synaptic locus for TrkB signaling underlying ketamine rapid antidepressant action. Cell Rep. 36(7), 109513 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. C. Xu, X. Fu, S. Zhu, J.J. Liu, Retrolinkin recruits the WAVE1 protein complex to facilitate BDNF-induced TrkB endocytosis and dendrite outgrowth. Mol .Biol. Cell 27(21), 3342–3356 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. X.H. Liu, Z. Geng, J. Yan, T. Li, Q. Chen, Q.Y. Zhang, Z.Y. Chen, Blocking GSK3β-mediated dynamin1 phosphorylation enhances BDNF-dependent TrkB endocytosis and the protective effects of BDNF in neuronal and mouse models of Alzheimer’s disease. Neurobiol. Dis. 74, 377–391 (2015)

    CAS  PubMed  Google Scholar 

  55. Y.Y. Guo, Y. Lu, Y. Zheng, X.R. Chen, J.L. Dong, R.R. Yuan, S.H. Huang, H. Yu, Y. Wang, Z.Y. Chen, B. Su, Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) promotes hippocampus-dependent memory via its deubiquitinating effect on TrkB. J. Neurosci. 37(25), 5978–5995 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 82073023, 81871923, to J. Li; No.82103357 to L.P. Hu; No. 82002485, to Q. Li; No. 31801212, to L.L. Yao; No. 82103348, to Y.Y. Wang), the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (No. 20191809, to J. Li), the Natural Science Foundation of Shanghai (No.21ZR1461300 to L.P. Hu; No. 22ZR1460000 to X.L. Zhang), Shanghai Sailing Program (No.21YF1445200 to L.P. Hu), Innovative research team of high-level local universities in Shanghai, the Shanghai Municipal Health Commission (No. 202040092 to X.L. Zhang).

Author information

Authors and Affiliations

Authors

Contributions

L-PH, JX, and JL conceived the project and designed experiment. T-SB, S-TY, QL, Y-YW collected clinical information and performed bioinformatics analyses. Y-QZ, J-XX, P-QH, S-YC, W-ZZ, X-QW conducted the experiments. L-LY, X-LZ, S-HJ and S-QY analyzed data. Y-QZ and J-XX wrote the manuscript and made the figures. Z-GZ, M-ZM, L-PH, JX, and JL supervised this study and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ming-Ze Ma, Li-Peng Hu, Jia Xu or Jun Li.

Ethics declarations

Ethics approval and consent to participate

This study involved human participants and was approved by the Research Ethics Committee of Renji Hospital, School of Medicine, Shanghai Jiao Tong University (No. (2017)114.). This study involved animal subjects and was approved by the Research Ethics Committee of East China Normal University (ID: 2012–1204).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 18.9 MB)

Supplementary file2 (TIF 18.6 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, YQ., Bao, TS., Xie, JX. et al. The SLITRK4-CNPY3 axis promotes liver metastasis of gastric cancer by enhancing the endocytosis and recycling of TrkB in tumour cells. Cell Oncol. 46, 1049–1067 (2023). https://doi.org/10.1007/s13402-023-00795-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00795-9

Keywords

Navigation