Skip to main content

Advertisement

Log in

The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma

  • Research
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Urothelial carcinoma (UC) is a common disease in developed counties. This study aimed to identify autocrine roles and signaling pathways of gremlin 1, DAN family BMP antagonist (GREM1), which inhibits tumor growth and epithelial-mesenchymal transition (EMT) in UC.

Methods

Systematic in vitro and in vivo studies using genetic engineering, different urinary bladder urothelial carcinoma (UBUC)-derived cell lines, and mouse models were performed, respectively. Further, primary upper tract urothelial carcinoma (UTUC) and UBUC specimens were evaluated by immunohistochemistry.

Results

GREM1 protein levels conferred better disease-specific and metastasis-free survival rates and played an independent prognostic factor in UTUC and UBUC. Hypermethylation is the primary cause of low GREM1 levels. In different UBUC-derived cell lines, the autocrine/secreted and glycosylated GREM1 interacted with transforming growth factor beta 1 (TGFB1) and inhibited TGFβ/BMP/SMAD signaling and myosin light chain 9 (MYL9) transactivation, subsequently cell proliferation and epithelial-mesenchymal transition (EMT). Secreted and glycosylated GREM1 also suppressed tumor growth, metastasis, and MYL9 levels in the mouse model. Instead, cytosolic GREM1 promoted cell proliferation and EMT by activating the tumor necrosis factor (TNF)/AKT/nuclear factor kappa B (NFκB) axis.

Conclusions

Clinical associations, animal models, and in vitro indications provided solid evidence to show that the epithelial autocrine GREM1 is a novel tumor suppressor in UCs. The glycosylated-GREM1 hampered cell proliferation, migration, invasion, and in vitro angiogenesis through interaction with TGFB1 to inactivate TGFβ/BMP/SMAD-mediated EMT in an autocrine manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw data used to support the conclusions of this article will be made available by the corresponding author, without undue reservation to any qualified researcher.

Abbreviations

5-aza :

5-Aza-2’-deoxycytidine

AKT1 :

AKT serine/threonine kinase 1

AMH :

Anti-Mullerian hormone

bHLHs :

Basic HLHs

BLCA :

Bladder urothelial carcinoma

BMP :

Bone morphogenetic protein

BMPR2 :

Bone morphogenetic protein receptor type 2

BrdU :

5-Bromo-2'-deoxyuridine

BRE :

BMP responsive element

BTRC :

Beta-transducin repeat containing E3 ubiquitin protein

CDH1 :

Cadherin 1

CDKN1A :

Cyclin-dependent kinase inhibitor 1 A

DAPK1 :

Death-associated protein kinase 1

DSS :

Disease-specific survival

EMT :

Epithelial-mesenchymal transition

FN1 :

Fibronectin 1

GDF :

Growth differentiation factors

GEO :

Gene Expression Omnibus

GREM1 :

Gremlin 1, DAN family BMP antagonist

GSEA :

Gene Set Enrichment Analysis

HUVEC :

Human umbilical vein endothelial cells

ID1 :

Inhibitor of DNA binding 1

IKBKB :

Nuclear factor kappa B kinase subunit beta

MFS :

Metastasis-free survival

MGMT :

O-6-methylguanine-DNA methyltransferase

MLH1 :

MutL homolog 1

MMP :

Matrix metalloproteinase

MTT :

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MYL9 :

Myosin light chain 9

NFκB :

Nuclear factor kappa B

NFKBIA :

NFKB inhibitor alpha

NGF :

Nerve growth factor

NODAL :

Nodal growth differentiation factor

PDAC :

Pancreatic ductal adenocarcinoma

PDGF :

Platelet-derived growth factor

PI3K :

Phosphoinositide 3-kinase

PIK3CA :

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

RELA :

RELA proto-oncogene

RPKM :

Read per kilobase per million

shRNA :

Small hairpin RNA

SNAI1 :

Snail family transcriptional repressor 1

SRE :

SMAD responsive element

TCGA :

The Cancer Genome Atlas

TGFβ :

Transforming growth factor beta

TGFBR :

Transforming growth factor beta receptor

TNF :

Tumor necrosis factor

TNFRSF1B :

TNF receptor superfamily member 1B

TP53 :

Tumor protein p53

TRAF1 :

TNF receptor-associated factor 1

TWIST1 :

Twist family bHLH transcription factor 1

UBUC :

Urinary bladder urothelial carcinoma

UC :

Urothelial carcinoma

UTUC :

Upper tract urothelial carcinoma

VIM :

Vimentin

ZEB1 :

Zinc finger E-box binding homeobox 1

References

  1. O. Sanli, J. Dobruch, M.A. Knowles, M. Burger, M. Alemozaffar, M.E. Nielsen, Y. Lotan, Bladder cancer. Nat. Rev. Dis. Primers 3, 17022 (2017)

    PubMed  Google Scholar 

  2. M. Rouprêt, M. Babjuk, M. Burger, O. Capoun, D. Cohen, E.M. Compérat, N.C. Cowan, J.L. Dominguez-Escrig, P. Gontero, A. Hugh Mostafid et al., European association of urology guidelines on upper urinary tract urothelial carcinoma: 2020 update. Eur. Urol. 79(1), 62–79 (2021)

    PubMed  Google Scholar 

  3. K.K. Aben, J.A. Witjes, M.P. Schoenberg, C. Hulsbergen-van de Kaa, A.L. Verbeek, L.A. Kiemeney, Familial aggregation of urothelial cell carcinoma. Int. J. Cancer 98(2), 274–278 (2002)

    CAS  PubMed  Google Scholar 

  4. P. Lichtenstein, N.V. Holm, P.K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, K. Hemminki, Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343(2), 78–85 (2000)

    CAS  PubMed  Google Scholar 

  5. T. Powles, J. Bellmunt, E. Comperat, M. De Santis, R. Huddart, Y. Loriot, A. Necchi, B.P. Valderrama, A. Ravaud, S.F. Shariat et al., Bladder cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 33(3), 244–258 (2022)

    CAS  PubMed  Google Scholar 

  6. A. Richters, K.K.H. Aben, L. Kiemeney, The global burden of urinary bladder cancer: an update. World J. Urol. 38(8), 1895–1904 (2020)

    PubMed  Google Scholar 

  7. J.J. Meeks, H. Al-Ahmadie, B.M. Faltas, J.A. Taylor 3rd., T.W. Flaig, D.J. DeGraff, E. Christensen, B.L. Woolbright, D.J. McConkey, L. Dyrskjøt, Genomic heterogeneity in bladder cancer: challenges and possible solutions to improve outcomes. Nat. Rev. Urol. 17(5), 259–270 (2020)

    PubMed  PubMed Central  Google Scholar 

  8. L. Fagerberg, B.M. Hallström, P. Oksvold, C. Kampf, D. Djureinovic, J. Odeberg, M. Habuka, S. Tahmasebpoor, A. Danielsson, K. Edlund et al., Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 13(2), 397–406 (2014)

    CAS  PubMed  Google Scholar 

  9. X. Guo, X.F. Wang, Signaling cross-talk between TGF-beta/BMP and other pathways. Cell. Res. 19(1), 71–88 (2009)

    CAS  PubMed  Google Scholar 

  10. L.Z. Topol, B. Bardot, Q. Zhang, J. Resau, E. Huillard, M. Marx, G. Calothy, D.G. Blair, Biosynthesis, post-translation modification, and functional characterization of Drm/Gremlin. J. Biol. Chem. 275(12), 8785–8793 (2000)

    CAS  PubMed  Google Scholar 

  11. UniProt, UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49(D1), D480-d489 (2021)

  12. G.M. Todd, Z. Gao, M. Hyvönen, D.P. Brazil, P. Ten Dijke, Secreted BMP antagonists and their role in cancer and bone metastases. Bone 137, 115455 (2020)

    CAS  PubMed  Google Scholar 

  13. D.P. Brazil, R.H. Church, S. Surae, C. Godson, F. Martin, BMP signalling: agony and antagony in the family. Trends Cell Biol. 25(5), 249–264 (2015)

    CAS  PubMed  Google Scholar 

  14. S. O’Reilly, Gremlin: a complex molecule regulating wound healing and fibrosis. Cell. Mol. Life Sci. 78(24), 7917–7923 (2021)

    CAS  PubMed  Google Scholar 

  15. R.H. Church, A. Krishnakumar, A. Urbanek, S. Geschwindner, J. Meneely, A. Bianchi, B. Basta, S. Monaghan, C. Elliot, M. Strömstedt et al., Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem. J. 466(1), 55–68 (2015)

    CAS  PubMed  Google Scholar 

  16. I.J.H. van Vlodrop, S.C. Joosten, T. De Meyer, K.M. Smits, L. Van Neste, V. Melotte, M. Baldewijns, L.J. Schouten, P.A. van den Brandt, J. Jeschke et al., A four-gene promoter methylation marker panel consisting of GREM1, NEURL, LAD1, and NEFH predicts survival of clear cell renal cell cancer patients. Clin. Cancer Res. 23(8), 2006–2018 (2017)

    PubMed  Google Scholar 

  17. M.R. Morris, C. Ricketts, D. Gentle, M. Abdulrahman, N. Clarke, M. Brown, T. Kishida, M. Yao, F. Latif, E.R. Maher, Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29(14), 2104–2117 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. I.J. van Vlodrop, M.M. Baldewijns, K.M. Smits, L.J. Schouten, L. van Neste, W. van Criekinge, H. van Poppel, E. Lerut, K.E. Schuebel, N. Ahuja et al., Prognostic significance of Gremlin1 (GREM1) promoter CpG island hypermethylation in clear cell renal cell carcinoma. Am. J. Pathol. 176(2), 575–584 (2010)

    PubMed  PubMed Central  Google Scholar 

  19. Z. Li, X. Guo, Y. Wu, S. Li, J. Yan, L. Peng, Z. Xiao, S. Wang, Z. Deng, L. Dai et al., Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients. Breast Cancer Res. Treat. 149(3), 767–779 (2015)

    CAS  PubMed  Google Scholar 

  20. H. Kobayashi, K.A. Gieniec, J.A. Wright, T. Wang, N. Asai, Y. Mizutani, T. Lida, R. Ando, N. Suzuki, T.R.M. Lannagan et al., The balance of stromal BMP signaling mediated by GREM1 and ISLR drives colorectal carcinogenesis. Gastroenterology 160(4), 1224-1239.e1230 (2021)

    CAS  PubMed  Google Scholar 

  21. T.C.M. Zuiverloon, F.C. de Jong, J.C. Costello, D. Theodorescu, Systematic review: characteristics and preclinical uses of bladder cancer cell lines. Bladder Cancer 4(2), 169–183 (2018)

    PubMed  PubMed Central  Google Scholar 

  22. C.F. Li, W.R. Wu, T.C. Chan, Y.H. Wang, L.R. Chen, W.J. Wu, B.W. Yeh, S.S Liang, Y.L. Shiue: transmembrane and coiled-coil domain 1 impairs the AKT signaling pathway in urinary bladder urothelial carcinoma: a characterization of a tumor suppressor. Clin. Cancer. Res. 23(24), 7650–7663 (2017)

  23. T.C. Chan, W.J. Wu, W.M. Li, M.S. Shiao, Y.L. Shiue, C.F. Li, SLC14A1 prevents oncometabolite accumulation and recruits HDAC1 to transrepress oncometabolite genes in urothelial carcinoma. Theranostics 10(25), 11775–11793 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. L.C. Li, R. Dahiya, MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11), 1427–1431 (2002)

    CAS  PubMed  Google Scholar 

  25. W.R. Wu, J.T. Lin, C.T. Pan, T.C. Chan, C.L. Liu, W.J. Wu, J.J. Sheu, B.W. Yeh, S.K. Huang, J.Y. Jhung et al., Amplification-driven BCL6-suppressed cytostasis is mediated by transrepression of FOXO3 and post-translational modifications of FOXO3 in urinary bladder urothelial carcinoma. Theranostics 10(2), 707–724 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, T. Feng, L. Zhou, W. Tang, L. Zhan et al., clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2(3), 100141 (2021)

    CAS  PubMed  Google Scholar 

  27. A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102(43), 15545–15550 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. D.S. Chandrashekar, B. Bashel, S.A.H. Balasubramanya, C.J. Creighton, I. Ponce-Rodriguez, B. Chakravarthi, S. Varambally, UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19(8), 649–658 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. J. Gao, B.A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S.O. Sumer, Y. Sun, A. Jacobsen, R. Sinha, E. Larsson et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6(269), pl1 (2013)

    PubMed  PubMed Central  Google Scholar 

  30. A.G. Robertson, J. Kim, H. Al-Ahmadie, J. Bellmunt, G. Guo, A.D. Cherniack, T. Hinoue, P.W. Laird, K.A. Hoadley, R. Akbani et al., Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171(3), 540-556.e525 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. J. Xu, S. Lamouille, R. Derynck, TGF-beta-induced epithelial to mesenchymal transition. Cell. Res. 19(2), 156–172 (2009)

    CAS  PubMed  Google Scholar 

  32. A. Liberzon, C. Birger, H. Thorvaldsdóttir, M. Ghandi, J.P. Mesirov, P. Tamayo, The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1(6), 417–425 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Lamouille, J. Xu, R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15(3), 178–196 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. P. Meylan, R. Dreos, G. Ambrosini, R. Groux, P. Bucher, EPD in 2020: enhanced data visualization and extension to ncRNA promoters. Nucleic Acids Res. 48(D1), D65-d69 (2020)

    CAS  PubMed  Google Scholar 

  35. R.J. Wordinger, G. Zode, A.F. Clark, Focus on molecules: gremlin. Exp. Eye Res. 87(2), 78–79 (2008)

    CAS  PubMed  Google Scholar 

  36. C. Zardecki, S. Dutta, D.S. Goodsell, R. Lowe, M. Voigt, S.K. Burley, PDB-101: educational resources supporting molecular explorations through biology and medicine. Protein Sci. 31(1), 129–140 (2022)

    CAS  PubMed  Google Scholar 

  37. J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G.A. Salazar, E.L.L. Sonnhammer, S.C.E. Tosatto, L. Paladin, S. Raj, L.J. Richardson et al., Pfam: the protein families database in 2021. Nucleic Acids Res. 49(D1), D412-d419 (2021)

    CAS  PubMed  Google Scholar 

  38. B. Jung, J.J. Staudacher, D. Beauchamp, Transforming growth factor β superfamily signaling in development of colorectal cancer. Gastroenterology 152(1), 36–52 (2017)

    CAS  PubMed  Google Scholar 

  39. V.G. Martínez, C. Rubio, M. Martínez-Fernández, C. Segovia, F. López-Calderón, M.I. Garín, A. Teijeira, E. Munera-Maravilla, A. Varas, R. Sacedón et al., BMP4 induces M2 macrophage polarization and favors tumor progression in bladder cancer. Clin. Cancer Res. 23(23), 7388–7399 (2017)

    PubMed  Google Scholar 

  40. L.M. Wakefield, C.S. Hill, Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat. Rev. Cancer 13(5), 328–341 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. M.K. Khokha, D. Hsu, L.J. Brunet, M.S. Dionne, R.M. Harland, Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat. Genet. 34(3), 303–307 (2003)

    CAS  PubMed  Google Scholar 

  42. O. Korchynskyi, P. ten Dijke, Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 277(7), 4883–4891 (2002)

    CAS  PubMed  Google Scholar 

  43. J. Perk, A. Iavarone, R. Benezra, Id family of helix-loop-helix proteins in cancer. Nat. Rev. Cancer 5(8), 603–614 (2005)

    CAS  PubMed  Google Scholar 

  44. Z. Zhao, Z. Bo, W. Gong, Y. Guo, Inhibitor of differentiation 1 (Id1) in cancer and cancer therapy. Int. J. Med. Sci. 17(8), 995–1005 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. B. Schmierer, C.S. Hill, TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol. 8(12), 970–982 (2007)

    CAS  PubMed  Google Scholar 

  46. A.P. Hinck, T.D. Mueller, T.A. Springer. Structural biology and evolution of the TGF-β family. Cold Spring Harb Perspect. Biol. 8(12), a022103 (2016)

  47. L. Lan, T. Evan, H. Li, A. Hussain, E.J. Ruiz, M. Zaw Thin, R.M.M. Ferreira, H. Ps, E.M. Riising, Y. Zen et al., GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature 607(7917), 163–168 (2022)

    CAS  PubMed  Google Scholar 

  48. D. Brenner, H. Blaser, T.W. Mak, Regulation of tumour necrosis factor signalling: live or let die. Nat. Rev. Immunol. 15(6), 362–374 (2015)

    CAS  PubMed  Google Scholar 

  49. A. Yaron, A. Hatzubai, M. Davis, I. Lavon, S. Amit, A.M. Manning, J.S. Andersen, M. Mann, F. Mercurio, Y. Ben-Neriah, Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 396(6711), 590–594 (1998)

    CAS  PubMed  Google Scholar 

  50. P.A. Baeuerle, D. Baltimore, NF-kappa B: ten years after. Cell 87(1), 13–20 (1996)

    CAS  PubMed  Google Scholar 

  51. T. Liu, L. Zhang, D. Joo, S.C. Sun, NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023- (2017)

    PubMed  PubMed Central  Google Scholar 

  52. M. Karin, Y. Ben-Neriah, Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol. 18, 621–663 (2000)

    CAS  PubMed  Google Scholar 

  53. C. Reily, T.J. Stewart, M.B. Renfrow, J. Novak, Glycosylation in health and disease. Nat. Rev. Nephrol. 15(6), 346–366 (2019)

    PubMed  PubMed Central  Google Scholar 

  54. N. Mitra, S. Sinha, T.N. Ramya, A. Surolia, N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem. Sci. 31(3), 156–163 (2006)

    CAS  PubMed  Google Scholar 

  55. J.W. Lowery, J.M. Amich, A. Andonian, V. Rosen, N-linked glycosylation of the bone morphogenetic protein receptor type 2 (BMPR2) enhances ligand binding. Cell. Mol. Life Sci. 71(16), 3165–3172 (2014)

    CAS  PubMed  Google Scholar 

  56. J.T. Stull, K.E. Kamm, R. Vandenboom, Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch. Biochem. Biophys. 510(2), 120–128 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. J.H. Wang, L. Zhang, S.T. Huang, J. Xu, Y. Zhou, X.J. Yu, R.Z. Luo, Z.S. Wen, W.H. Jia, M. Zheng, Expression and prognostic significance of MYL9 in esophageal squamous cell carcinoma. PLoS ONE 12(4), e0175280 (2017)

    PubMed  PubMed Central  Google Scholar 

  58. K. Matsushita, S. Kobayashi, H. Akita, M. Konno, A. Asai, T. Noda, Y. Iwagami, T. Asaoka, K. Gotoh, M. Mori, et al. Clinicopathological significance of MYL9 expression in pancreatic ductal adenocarcinoma. Cancer Rep. (Hoboken) 5(10), e1582 (2022)

  59. Y. Deng, L. Liu, W. Feng, Z. Lin, Y. Ning, X. Luo, High expression of MYL9 indicates poor clinical prognosis of epithelial ovarian cancer. Recent Pat. Anticancer Drug Discov. 16(4), 533–539 (2021)

    CAS  PubMed  Google Scholar 

  60. B.S. Kruthika, H. Sugur, K. Nandaki, A. Arimappamagan, K. Paturu, V. Santosh, Expression pattern and prognostic significance of myosin light chain 9 (MYL9): a novel biomarker in glioblastoma. J. Clin. Pathol. 72(10), 677–681 (2019)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate the technical assistance from Ms. SZ Dehghanian and Dr. TJ Chen.

Funding

The National Science and Technology Council (MOST-107–2314-B-110-MY3), NSYSU-KMU Joint Research Project (#NSYSUKMU 109-I008), Kaohsiung Armed Forces General Hospital (KAFGH-A-108021 & -109038), and Kaohsiung Medical University Research Center (KMU-TC111A02-0) supported this research.

Author information

Authors and Affiliations

Authors

Contributions

CFL, WJW, YLS conceived the concepts; CFL, CTP, YLS designed the experiments; TCC, CTP, HYH, PV, RJW, BWY, LRC, and MSS performed the experiments; CTP and CFL analyzed the data. CFL, CTP and YLS wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chien-Feng Li or Yow-Ling Shiue.

Ethics declarations

Human data and samples were obtained with informed consent, and the use was approved (IRB10207-001) by the Institutional Review Board of the Chi Mei Medical Center, Tainan, Taiwan. Animal treatments (#10626) were performed according to the Institutional Animal Care and Use Committee of National Sun Yat-sen University (NSYSU) Protocol, and NSYSU approved all protocols. This study does not contain any studies involving human participants performed by any of the authors.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2350 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, TC., Pan, CT., Hsieh, HY. et al. The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma. Cell Oncol. 46, 933–951 (2023). https://doi.org/10.1007/s13402-023-00788-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-023-00788-8

Keywords

Navigation