Skip to main content

Advertisement

Log in

TRIM44 regulates tumor immunity in gastric cancer through LOXL2-dependent extracellular matrix remodeling

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Gastric cancer is a gastrointestinal malignancy with high mortality and poor prognosis, and the molecular mechanism of gastric tumorigenesis remains unclear. TRIM44 has been reported to be involved in tumor development. However, the role of TRIM44 in tumor immunity is largely unknown.

Methods

We analyzed TRIM44 expression in clinical gastric cancer tissues and normal tissues by using western blot, quantitative real-time PCR and bioinformatics analyses. We further investigated the involvement of TRIM44 in tumor immunity in vivo and found that it was dependent on extracellular matrix remodeling. We detected the interaction between TRIM44 and LOXL2 by using immunofluorescence staining and coimmunoprecipitation assays. We observed that TRIM44 mediates the stability of LOXL2 by ubiquitination assays.

Results

TRIM44 expression is high and is correlated with T-cell infiltration in gastric cancer. TRIM44 inhibits gastric tumorigenicity by regulating T-cell-mediated antitumor immunity and modulating the protein level of LOXL2. Mechanistically, TRIM44 directly binds to LOXL2 and affects the stability of LOXL2 to change extracellular matrix remodeling and influence tumor immunity.

Conclusion

These findings demonstrate that TRIM44 regulates the stability of LOXL2 to remodel the tumor extracellular matrix to modulate tumor immunity in gastric cancer and that the TRIM44/LOXL2 complex is a promising biomarker for gastric cancer prognosis and might be a novel immunotherapy target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The detailed raw data generated or analyzed in the current study will be provided by the corresponding author upon reasonable request. The associated analysis methods were based on published articles that were cited in the references.

Abbreviations

TRIM44:

Tripartite motif containing 44

LOXL2:

Lysyl oxidase-like 2

ECM:

Extracellular matrix

GSEA:

Gene set enrichment analysis

IF:

Immunofluorescence

IHC:

Immunohistochemical

PCR:

Polymerase chain reaction

CCK8:

Cell Counting Kit-8

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

a-SMA:

a-Smooth muscle actin

UB:

Ubiquitin

IB:

Immunoblotting

WCL:

Whole-cell lysate

DAPI:

4’,6-Diamidino-2-phenylindole

IP:

Immunoprecipitation

CHX:

Cycloheximide.

References

  1. Y. Yang, W.J. Meng, Z.Q. Wang, Cancer Stem cells and the Tumor Microenvironment in Gastric Cancer. Front. Oncol. 11, 803974 (2021)

    Article  PubMed  Google Scholar 

  2. H. Sung, J. Ferlay, R.L. Siegel, Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3), 209–249 (2021)

    Article  PubMed  Google Scholar 

  3. E.C. Smyth, M. Nilsson, H.I. Grabsch, N.C. van Grieken, F. Lordick, Gastric cancer. Lancet (London, England) 396(10251), 635–648 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. T. Shibue, R.A. Weinberg, EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. reviews Clin. Oncol. 14(10), 611–629 (2017)

    Article  Google Scholar 

  5. C. Bonnans, J. Chou, Z. Werb, Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15(12), 786–801 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Najafi, B. Farhood, K. Mortezaee, Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J. Cell. Biochem. 120(3), 2782–2790 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. M.W. Pickup, J.K. Mouw, V.M. Weaver, The extracellular matrix modulates the hallmarks of cancer. J. Cell. Biochem. 15(12), 1243–1253 (2014)

    CAS  Google Scholar 

  8. Y. Dong, Q. Zheng, Z. Wang, X. Lin, Y. You, S. Wu, Y. Wang, C. Hu, X. Xie, J. Chen et al., Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis. J. Hematol. Oncol. 12(1), 112 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  9. C. Dou, Z. Liu, K. Tu, H. Zhang, C. Chen, U. Yaqoob, Y. Wang, J. Wen, J. van Deursen, D. Sicard et al., P300 Acetyltransferase mediates Stiffness-Induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology 154(8), 2209–2221.e2214 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. X. Xu, Y. Zhang, X. Wang, S. Li, Substrate stiffness drives epithelial to mesenchymal transition and proliferation through the NEAT1-Wnt/β-Catenin pathway in Liver Cancer. Int J Mol Sci, 22(21), (2021)

  11. D.H. Peng, B.L. Rodriguez, L. Diao, Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8(+) T cell exhaustion. Nat. Commun. 11(1), 4520 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S.D. Vallet, S. Ricard-Blum, Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 63(3), 349–364 (2019)

    Article  CAS  PubMed  Google Scholar 

  13. D.H. Peng, C. Ungewiss, P. Tong, L.A. Byers, J. Wang, J.R. Canales, P.A. Villalobos, N. Uraoka, B. Mino, C. Behrens et al., ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene 36(14), 1925–1938 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. L. Wu, Y. Zhu, The function and mechanisms of action of LOXL2 in cancer (review). Int. J. Mol. Med. 36(5), 1200–1204 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. L.Y. Xu, E.M. Li, A. Cano, P.G. Santamaría, G. Moreno-Bueno, LOXL2 in epithelial cell plasticity and tumor progression. Cancer Res. 8(9), 1095–1108 (2012)

    Google Scholar 

  16. X.H. Zhan, J.W. Jiao, H.F. Zhang, X.E. Xu, J.Z. He, R.L. Li, H.Y. Zou, Z.Y. Wu, S.H. Wang, J.Y. Wu et al., LOXL2 upregulates phosphorylation of Ezrin to Promote Cytoskeletal reorganization and Tumor Cell Invasion. Cancer Res. 79(19), 4951–4964 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. J.P. Cebrià-Costa, L. Pascual-Reguant, A. Gonzalez-Perez, G. Serra-Bardenys, J. Querol, M. Cosín, G. Verde, LOXL2-mediated H3K4 oxidation reduces chromatin accessibility in triple-negative breast cancer cells. Oncogene 39(1), 79–121 (2020)

    Article  PubMed  Google Scholar 

  18. R. Peng, P.F. Zhang, C. Zhang, X.Y. Huang, Y.B. Ding, B. Deng, D.S. Bai, Elevated TRIM44 promotes intrahepatic cholangiocarcinoma progression by inducing cell EMT via MAPK signaling. Cancer Med. 7(3), 796–808 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Sato, K. Azuma, K. Kinowaki, Combined A20 and tripartite motif-containing 44 as poor prognostic factors for breast cancer patients of the japanese population. Pathol. Int. 71(1), 60–69 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. Y.P. Xu, T. Kawaguchi, S. Komatsu, D. Ichikawa, S. Hirajima, Y. Nishimura, H. Konishi, A. Shiozaki, H. Fujiwara, K. Okamoto et al., Overexpression of TRIM44 is related to invasive potential and malignant outcomes in esophageal squamous cell carcinoma. Cancer Med. 39(6), 1010428317700409 (2017)

    Google Scholar 

  21. Y. Yamada, N. Kimura, K.I. Takayama, Y. Sato, T. Suzuki, TRIM44 promotes cell proliferation and migration by inhibiting FRK in renal cell carcinoma. Cancer Sci. 111(3), 881–890 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. L. Lyu, T.C. Lin, N. McCarty, TRIM44 mediated p62 deubiquitination enhances DNA damage repair by increasing nuclear FLNA and 53BP1 expression. Oncogene 40(32), 5116–5130 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. P. Zou, M. Zhu, C. Lian, J. Wang, Z. Chen, X. Zhang, Y. Yang, X. Chen, X. Cui, J. Liu et al., Mir-192-5p suppresses the progression of lung cancer bone metastasis by targeting TRIM44. Sci. Rep. 9(1), 19619 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. Kawazoe, K. Shitara, N. Boku, T. Yoshikawa, M. Terashima, Current status of immunotherapy for advanced gastric cancer. Jpn J. Clin. Oncol. 51(1), 20–27 (2021)

    Article  PubMed  Google Scholar 

  25. N.D. Pilonis, M. Tischkowitz, R.C. Fitzgerald, M. di Pietro, Hereditary diffuse gastric Cancer: approaches to Screening, Surveillance, and treatment. Annu. Rev. Med. 72, 263–280 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. E. Batlle, H. Clevers, Cancer stem cells revisited. Nat. Med. 23(10), 1124–1134 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. M. Fu, J. Gu, P. Jiang, H. Qian, W. Xu, X. Zhang, Exosomes in gastric cancer: roles, mechanisms, and applications. Mol. Cancer 18(1), 41 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  28. A. Rojas, P. Araya, I. Gonzalez, E. Morales, Gastric Tumor Microenvironment. Adv. Exp. Med. Biol. 1226, 23–35 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. S. Hatakeyama, TRIM family proteins: roles in Autophagy, immunity, and carcinogenesis. Trends Biochem. Sci. 42(4), 297–311 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. S. Venuto, G. Merla, E3 ubiquitin ligase TRIM proteins, cell cycle and mitosis. Cells. 8(5), (2019)

  31. M. Watanabe, S. Hatakeyama, TRIM proteins and diseases. J. BioChem. 161(2), 135–144 (2017)

    CAS  PubMed  Google Scholar 

  32. J. Ji, K. Ding, T. Luo, X. Zhang, A. Chen, D. Zhang, G. Li, F. Thorsen, B. Huang, X. Li et al., TRIM22 activates NF-κB signaling in glioblastoma by accelerating the degradation of IκBα. Cell. Death Differ. 28(1), 367–381 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. K. Azuma, K. Ikeda, T. Suzuki, K. Aogi, K. Horie-Inoue, S. Inoue, TRIM47 activates NF-κB signaling via PKC-ε/PKD3 stabilization and contributes to endocrine therapy resistance in breast cancer. Proceedings of the National Academy of Sciences of the United States of America. 118(35), (2021)

  34. W. Eberhardt, K. Haeussler, U. Nasrullah, J. Pfeilschifter, Multifaceted roles of TRIM proteins in Colorectal Carcinoma. International journal of molecular sciences. 21(20), (2020)

  35. Y. Sun, D. Ren, C. Yang, W. Yang, J. Zhao, Y. Zhou, X. Jin, H. Wu, TRIM15 promotes the invasion and metastasis of pancreatic cancer cells by mediating APOA1 ubiquitination and degradation. Biochim. et Biophys. acta Mol. basis disease 1867(11), 166213 (2021)

    Article  CAS  Google Scholar 

  36. Z. Chen, T.C. Lin, X. Bi, G. Lu, B.C. Dawson, R. Miranda, L.J. Medeiros, I. McNiece, N. McCarty, TRIM44 promotes quiescent multiple myeloma cell occupancy and survival in the osteoblastic niche via HIF-1α stabilization. Leukemia 33(2), 469–486 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. A. Chakravarthy, L. Khan, N.P. Bensler, P. Bose, D.D. De Carvalho, TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9(1), 4692 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  38. J. Kiyokawa, Y. Kawamura, S.M. Ghouse, S. Acar, Modification of Extracellular Matrix enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma. Nat. Commun. 27(3), 889–902 (2021)

    CAS  Google Scholar 

  39. G.R. Rossi, E.S. Trindade, F. Souza-Fonseca-Guimaraes, Tumor Microenvironment-Associated Extracellular Matrix Components regulate NK cell function. Front. Immunol. 11, 73 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. P.G. Amendola, R. Reuten, Interplay between LOX enzymes and integrins in the Tumor Microenvironment. Cancers (Basel). 11(5), (2019)

  41. A.P. Tse, K.M. Sze, Q.T. Shea, E.Y. Chiu, F.H. Tsang, D.K. Chiu, M.S. Zhang, D. Lee, I.M. Xu, C.Y. Chan et al., Hepatitis transactivator protein X promotes extracellular matrix modification through HIF/LOX pathway in liver cancer. Cancers 7(5), 44 (2018)

    Google Scholar 

  42. B. Yang, J. Wang, Y. Wang, H. Zhou, X. Wu, Z. Tian, B. Sun, Novel function of Trim44 promotes an antiviral response by stabilizing VISA. J. Immunol. (Baltimore Md: 1950) 190(7), 3613–3619 (2013)

    Article  CAS  Google Scholar 

  43. L. Peng, Y.L. Ran, H. Hu, L. Yu, Q. Liu, Z. Zhou, Y.M. Sun, L.C. Sun, J. Pan, L.X. Sun et al., Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway. Carcinogenesis 30(10), 1660–1669 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. L. Wang, S. Cao, R. Zhai, Y. Zhao, G. Song, Systematic analysis of expression and prognostic values of Lysyl Oxidase Family in Gastric Cancer. Front. Genet. 12, 760534 (2021)

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ZX and CC designed the study. ZX, CYL and SY performed the experiments. WXS and LFJ supervised the study. CC, ZX, SY, WXS and LFJ analyzed and interpreted the data. ZX and LFJ performed the statistical analysis. ZX and CC wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cheng Chen.

Ethics declarations

Ethics approval and consent to participate

All animal protocols were approved by the Shandong University Institute Research Ethics Committee.

Consent for publication

All authors agreed on the publication of the manuscript.

Competing interests

No author has competing interests to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wu, X., Sun, Y. et al. TRIM44 regulates tumor immunity in gastric cancer through LOXL2-dependent extracellular matrix remodeling. Cell Oncol. 46, 423–435 (2023). https://doi.org/10.1007/s13402-022-00759-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00759-5

Keywords

Navigation