Skip to main content

Advertisement

Log in

Distinct expression and function of breast cancer metastasis suppressor 1 in mutant P53 glioblastoma

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastoma (GBM) is the most malignant subtype of astrocytic tumors with the worst prognosis in all its progressive forms. Breast cancer metastasis suppressor 1 (BRMS1) is a metastasis suppressor gene that controls malignancy in multiple tumors. As yet, however, its clinical and functional significance in mutant P53 GBM remains inconclusive. Here, we attempted to study the importance of BRMS1 in mutant P53 GBM.

Methods

BRMS1 expression was evaluated in 74 human astrocytoma tissues by qRT-PCR, Western blotting and immunohistochemistry. BRMS1 expression in the astrocytoma tissues was correlated with clinicopathological parameters, the P53 mutation status and BRMS1 downstream targets, and compared with TCGA and NCI-60 datasets. siRNA-mediated knockdown of BRMS1 was performed in selected GBM cell lines to evaluate the functional role of BRMS1.

Results

Our study revealed an enhanced expression of BRMS1 in GBM which was associated with a poor patient survival, and this observation was corroborated by the TCGA dataset. We also found a positive correlation between BRMS1 expression and a mutant P53 status in GBM which was associated with a poor prognosis. In vitro BRMS1 silencing reduced the growth of mutant P53 GBM cells and repressed their colonization and migration/invasion by modulating EGFR-AKT/NF-κB signaling. Transcriptional profiling revealed a positive and negative correlation of uPA and ING4 expression with BRMS1 expression, respectively.

Conclusion

Our data indicate upregulation of BRMS1 in high grade astrocytomas which correlates positively with mutant P53 and a poor patient survival. Silencing of BRMS1 in mutant P53 GBM cell lines resulted in a reduced cellular growth and migration/invasion by suppressing the EGFR-AKT/NF-kB signaling pathway. BRMS1 may serve as a predictive biomarker and therapeutic target in mutant P53 GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the manuscript or its supplementary files, and if more is needed, it shall be made available by the authors upon reasonable request.

Abbreviations

GBM:

Glioblastoma

 BRMS1 :

Breast cancer metastasis suppressor 1

wt/mut P53:

wild/mutant P53

MSG:

Metastasis suppressor gene

UPA :

Urokinase plasminogen activator

ING4 :

Inhibitor of growth family-4

EGFR :

Epidermal growth factor receptor

siRNA:

Small interfering RNA

NT-siRNA:

Non-targeting-small interfering RNA

qPCR:

Quantitative polymerase chain reaction

IHC:

Immunohistochemistry

TCGA:

The Cancer Genome Atlas

CPTAC:

Clinical Proteomic Tumor Analysis Consortium

References

  1. Q.T. Ostrom, H. Gittleman, J. Xu, C. Kromer, Y. Wolinsky, C. Kruchko, J.S. Barnholtz-Sloan, CBTRUS Statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro-Oncol 18(suppl_5), v1-v75  (2016). https://doi.org/10.1093/neuonc/now207

  2. D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, P. Kleihues, The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114(2), 97–109 (2007). https://doi.org/10.1007/s00401-007-0243-4

    Article  Google Scholar 

  3. P.Y. Wen, S. Kesari, Malignant gliomas in adults. N. Engl. J. Med. 359(5), 492–507 (2008). https://doi.org/10.1056/NEJMra0708126

    Article  CAS  Google Scholar 

  4. F.B. Furnari, T. Fenton, R.M. Bachoo, A. Mukasa, J.M. Stommel, A. Stegh, W.C. Hahn, K.L. Ligon, D.N. Louis, C. Brennan, L. Chin, R.A. DePinho, W.K. Cavenee, Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21(21), 2683–2710 (2007). https://doi.org/10.1101/gad.1596707

    Article  CAS  Google Scholar 

  5. D.N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W.K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, D.W. Ellison, The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016). https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  6. G. Alzial, O. Renoult, F. Paris, C. Gratas, A. Clavreul, C. Pecqueur, Wild-type isocitrate dehydrogenase under the spotlight in glioblastoma. Oncogene 41(5), 613–621 (2022). https://doi.org/10.1038/s41388-021-02056-1

    Article  CAS  Google Scholar 

  7. A.M. Molinaro, J.W. Taylor, J.K. Wiencke, M.R. Wrensch, Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol. 15(7), 405–417 (2019). https://doi.org/10.1038/s41582-019-0220-2

    Article  Google Scholar 

  8. D.R. Welch, P.S. Steeg, C.W. Rinker-Schaeffer, Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res.: BCR 2(6), 408–416 (2000)

    Article  CAS  Google Scholar 

  9. R.S. Samant, M.J. Seraj, M.M. Saunders, T.S. Sakamaki, L.A. Shevde, J.F. Harms, T.O. Leonard, S.F. Goldberg, L. Budgeon, W.J. Meehan, C.R. Winter, N.D. Christensen, M.F. Verderame, H.J. Donahue, D.R. Welch, Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clin. Exp. Metastasis 18(8), 683–693 (2000)

    Article  CAS  Google Scholar 

  10. P.R. Bucciarelli, K.S. Tan, N.P. Chudgar, W. Brandt, J. Montecalvo, T. Eguchi, Y. Liu, R. Aly, W.D. Travis, P.S. Adusumilli, D.R. Jones, BRMS1 expression in surgically resected lung adenocarcinoma predicts future metastases and is associated with a poor prognosis. J. Thorac. Oncol. 13(1), 73–84 (2018). https://doi.org/10.1016/j.jtho.2017.10.006

    Article  CAS  Google Scholar 

  11. M.A. Kodura, S. Souchelnytskyi, Breast carcinoma metastasis suppressor gene 1 (BRMS1): update on its role as the suppressor of cancer metastases. Cancer Metastasis Rev. 34(4), 611–618 (2015). https://doi.org/10.1007/s10555-015-9583-z

    Article  CAS  Google Scholar 

  12. Z. Yang, F. Liu, Z.L. Yang, BRMS1 and HPA as progression, clinical biological behaviors, and poor prognosis-related biomarkers for gallbladder adenocarcinoma. Appl. Immunohistochem. Mol. Morphol.: AIMM 24(4), 275–282 (2016). https://doi.org/10.1097/PAI.0000000000000183

    Article  CAS  Google Scholar 

  13. S. Zhang, Q.D. Lin, W. Di, Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. Int. J. Gynecol. Cancer: Off. J. Int. Gynecol. Cancer Soc. 16(2), 522–531 (2006). https://doi.org/10.1111/j.1525-1438.2006.00547.x

    Article  Google Scholar 

  14. Y. Zhang, J. Guan, Y. Sun, J. Chai, T. Zou, W. Gong, Z. Zhu, X. Liu, Q. Hou, X. Song, Effect of BRMS1 on tumorigenicity and metastasis of human rectal cancer. Cell Biochem. Biophys. 70(1), 505–509 (2014). https://doi.org/10.1007/s12013-014-9948-x

    Article  CAS  Google Scholar 

  15. D.R. Welch, C.A. Manton, D.R. Hurst, Breast Cancer Metastasis Suppressor 1 (BRMS1): robust biological and pathological data, but still enigmatic mechanism of action. Adv. Cancer Res. 132, 111–137 (2016). https://doi.org/10.1016/bs.acr.2016.05.003

  16. P. Mei, J. Bai, M. Shi, Q. Liu, Z. Li, Y. Fan, J. Zheng, BRMS1 suppresses glioma progression by regulating invasion, migration and adhesion of glioma cells. PLoS ONE 9(5), e98544 (2014). https://doi.org/10.1371/journal.pone.0098544

    Article  CAS  Google Scholar 

  17. A.J. Levine, J. Momand, C.A. Finlay, The p53 tumour suppressor gene. Nature 351(6326), 453–456 (1991). https://doi.org/10.1038/351453a0

    Article  CAS  Google Scholar 

  18. K. Watanabe, K. Sato, W. Biernat, O. Tachibana, K. von Ammon, N. Ogata, Y. Yonekawa, P. Kleihues, H. Ohgaki, Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin. Cancer Res. 3(4), 523–530 (1997)

    CAS  Google Scholar 

  19. C. Sarkar, A.M. Ralte, M.C. Sharma, V.S. Mehta, Recurrent astrocytic tumours–a study of p53 immunoreactivity and malignant progression. Br. J. Neurosurg. 16(4), 335–342 (2002)

    Article  CAS  Google Scholar 

  20. P.A. Muller, K.H. Vousden, p53 mutations in cancer. Nat. Cell Biol. 15(1), 2–8 (2013). https://doi.org/10.1038/ncb2641

    Article  CAS  Google Scholar 

  21. M. Cicek, R. Fukuyama, D.R. Welch, N. Sizemore, G. Casey, Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kappaB activity. Cancer Res. 65(9), 3586–3595 (2005). https://doi.org/10.1158/0008-5472.CAN-04-3139

    Article  CAS  Google Scholar 

  22. Y. Wu, W. Jiang, Y. Wang, J. Wu, H. Saiyin, X. Qiao, X. Mei, B. Guo, X. Fang, L. Zhang, H. Lou, C. Wu, S. Qiao, Breast cancer metastasis suppressor 1 regulates hepatocellular carcinoma cell apoptosis via suppressing osteopontin expression. PLoS ONE 7(8), e42976 (2012). https://doi.org/10.1371/journal.pone.0042976

    Article  CAS  Google Scholar 

  23. J. Yang, B. Zhang, Y. Lin, Y. Yang, X. Liu, F. Lu, Breast cancer metastasis suppressor 1 inhibits SDF-1alpha-induced migration of non-small cell lung cancer by decreasing CXCR4 expression. Cancer Lett. 269(1), 46–56 (2008). https://doi.org/10.1016/j.canlet.2008.04.016

    Article  CAS  Google Scholar 

  24. I. Morimoto, Y. Sasaki, S. Ishida, K. Imai, T. Tokino, Identification of the osteopontin gene as a direct target of TP53. Genes Chromosomes Cancer 33(3), 270–278 (2002). https://doi.org/10.1002/gcc.10020

    Article  CAS  Google Scholar 

  25. M. Eren, A.E. Boe, E.A. Klyachko, D.E. Vaughan, Role of plasminogen activator inhibitor-1 in senescence and aging. Semin Thromb. Hemost. 40(6), 645–651 (2014). https://doi.org/10.1055/s-0034-1387883

    Article  CAS  Google Scholar 

  26. S.A. Mehta, K.W. Christopherson, P. Bhat-Nakshatri, R.J. Goulet Jr., H.E. Broxmeyer, L. Kopelovich, H. Nakshatri, Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells: implications of p53 mutation or isoform expression on breast cancer cell invasion. Oncogene 26(23), 3329–3337 (2007). https://doi.org/10.1038/sj.onc.1210120

    Article  CAS  Google Scholar 

  27. E.H. Hall, Y. Liu, A. Xiao, L. Shock, D.L. Brautigan, M.W. Mayo, P.S. Adusumilli, D.R. Jones, Inhibition of breast cancer metastasis suppressor 1 promotes a mesenchymal phenotype in lung epithelial cells that express oncogenic K-RasV12 and loss of p53. PLoS ONE 9(4), e95869 (2014). https://doi.org/10.1371/journal.pone.0095869

    Article  CAS  Google Scholar 

  28. M. Cicek, R. Fukuyama, M.S. Cicek, S. Sizemore, D.R. Welch, N. Sizemore, G. Casey, BRMS1 contributes to the negative regulation of uPA gene expression through recruitment of HDAC1 to the NF-kappaB binding site of the uPA promoter. Clin. Exp. Metastasis 26(3), 229–237 (2009). https://doi.org/10.1007/s10585-009-9235-1

    Article  CAS  Google Scholar 

  29. J. Li, G. Li, Cell cycle regulator ING4 is a suppressor of melanoma angiogenesis that is regulated by the metastasis suppressor BRMS1. Cancer Res. 70(24), 10445–10453 (2010). https://doi.org/10.1158/0008-5472.CAN-10-3040

    Article  CAS  Google Scholar 

  30. O.I. Kit, E.M. Frantsiyants, L.S. Kozlova, E.E. Rostorguev, I.V. Balyazin-Parfenov, Y.A. Pogorelova, [A plasminogen regulation system in brain tumors]. Zhurnal voprosy neirokhirurgii imeni. N N Burdenko 81(2), 22–27 (2017). https://doi.org/10.17116/neiro201781222-27

    Article  CAS  Google Scholar 

  31. G. Klironomos, V. Bravou, D.J. Papachristou, G. Gatzounis, J. Varakis, E. Parassi, M. Repanti, H. Papadaki, Loss of inhibitor of growth (ING-4) is implicated in the pathogenesis and progression of human astrocytomas. Brain Pathol. 20(2), 490–497 (2010). https://doi.org/10.1111/j.1750-3639.2009.00325.x

    Article  Google Scholar 

  32. E.G. Van Meir, T. Kikuchi, M. Tada, H. Li, A.C. Diserens, B.E. Wojcik, H.J. Huang, T. Friedmann, N. de Tribolet, W.K. Cavenee, Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res. 54(3), 649–652 (1994)

    Google Scholar 

  33. G.R. Sareddy, K. Geeviman, C. Ramulu, P.P. Babu, The nonsteroidal anti-inflammatory drug celecoxib suppresses the growth and induces apoptosis of human glioblastoma cells via the NF-kappaB pathway. J. Neurooncol. 106(1), 99–109 (2012). https://doi.org/10.1007/s11060-011-0662-x

    Article  CAS  Google Scholar 

  34. G.R. Sareddy, M. Panigrahi, S. Challa, A. Mahadevan, P.P. Babu, Activation of Wnt/beta-catenin/Tcf signaling pathway in human astrocytomas. Neurochem. Int. 55(5), 307–317 (2009). https://doi.org/10.1016/j.neuint.2009.03.016

    Article  CAS  Google Scholar 

  35. D. Babu, A. Mudiraj, N. Yadav, B.V.K.C. Y, M. Panigrahi, P. Prakash Babu, Rabeprazole has efficacy per se and reduces resistance to temozolomide in glioma via EMT inhibition. Cell. Oncol. (Dordr) (2021). https://doi.org/10.1007/s13402-021-00609-w

    Article  Google Scholar 

  36. F. Varghese, A.B. Bukhari, R. Malhotra, A. De, IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE 9(5), e96801 (2014). https://doi.org/10.1371/journal.pone.0096801

    Article  CAS  Google Scholar 

  37. L. Du, C.S. Lyle, T.B. Obey, W.A. Gaarde, J.A. Muir, B.L. Bennett, T.C. Chambers, Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity: evidence that mitotic Bcl-2 phosphorylation is JNK-independent. J. Biol. Chem. 279(12), 11957–11966 (2004). https://doi.org/10.1074/jbc.M304935200

    Article  CAS  Google Scholar 

  38. D.S. Chandrashekar, B. Bashel, S.A.H. Balasubramanya, C.J. Creighton, I. Ponce-Rodriguez, B. Chakravarthi, S. Varambally, UALCAN: A Portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19(8), 649–658 (2017). https://doi.org/10.1016/j.neo.2017.05.002

    Article  CAS  Google Scholar 

  39. X. Liu, E. Ehmed, B. Li, J. Dou, X. Qiao, W. Jiang, X. Yang, S. Qiao, Y. Wu, Breast cancer metastasis suppressor 1 modulates SIRT1-dependent p53 deacetylation through interacting with DBC1. Am. J. Cancer Res. 6(6), 1441–1449 (2016)

    CAS  Google Scholar 

  40. R. Koyama, M. Tamura, T. Nakagaki, T. Ohashi, M. Idogawa, H. Suzuki, T. Tokino, Y. Sasaki, Identification and characterization of a metastatic suppressor BRMS1L as a target gene of p53. Cancer Sci. 108(12), 2413–2421 (2017). https://doi.org/10.1111/cas.13420

    Article  CAS  Google Scholar 

  41. J.N. Weinstein, Spotlight on molecular profiling: “Integromic” analysis of the NCI-60 cancer cell lines. Mol. Cancer Ther. 5(11), 2601–2605 (2006). https://doi.org/10.1158/1535-7163.MCT-06-0640

    Article  CAS  Google Scholar 

  42. F. Azuaje, K. Tiemann, S.P. Niclou, Therapeutic control and resistance of the EGFR-driven signaling network in glioblastoma. Cell. Commun. Signal.: CCS 13, 23 (2015). https://doi.org/10.1186/s12964-015-0098-6

    Article  CAS  Google Scholar 

  43. K.E. Cahill, R.A. Morshed, B. Yamini, Nuclear factor-kappaB in glioblastoma: insights into regulators and targeted therapy. Neuro Oncol. 18(3), 329–339 (2016). https://doi.org/10.1093/neuonc/nov265

    Article  CAS  Google Scholar 

  44. L.M. Kelly, Y. Buggy, A. Hill, N. O’Donovan, C. Duggan, E.W. McDermott, N.J. O’Higgins, L. Young, M.J. Duffy, Expression of the breast cancer metastasis suppressor gene, BRMS1, in human breast carcinoma: lack of correlation with metastasis to axillary lymph nodes. Tumour Biol. 26(4), 213–216 (2005). https://doi.org/10.1159/000086955

    Article  CAS  Google Scholar 

  45. K.S. Vaidya, S. Harihar, P.A. Phadke, L.J. Stafford, D.R. Hurst, D.G. Hicks, G. Casey, D.B. DeWald, D.R. Welch, Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling. J. Biol. Chem. 283(42), 28354–28360 (2008). https://doi.org/10.1074/jbc.M710068200

    Article  CAS  Google Scholar 

  46. D.G. Hicks, B.J. Yoder, S. Short, S. Tarr, N. Prescott, J.P. Crowe, A.E. Dawson, G.T. Budd, S. Sizemore, M. Cicek, T.K. Choueiri, R.R. Tubbs, D. Gaile, N. Nowak, M.A. Accavitti-Loper, A.R. Frost, D.R. Welch, G. Casey, Loss of breast cancer metastasis suppressor 1 protein expression predicts reduced disease-free survival in subsets of breast cancer patients. Clin. Cancer Res. 12(22), 6702–6708 (2006). https://doi.org/10.1158/1078-0432.CCR-06-0635

    Article  CAS  Google Scholar 

  47. B.V. Ventura, C. Quezada, S.C. Maloney, B.F. Fernandes, E. Antecka, C. Martins, S. Bakalian, S. di Cesare, M.N. Burnier Jr., Expression of the metastasis suppressor BRMS1 in uveal melanoma. Ecancermedicalscience 8, 410 (2014). https://doi.org/10.3332/ecancer.2014.410

    Article  Google Scholar 

  48. R.C. Zimmermann, D.R. Welch, BRMS1: a multifunctional signaling molecule in metastasis. Cancer Metastasis Rev. 39(3), 755–768 (2020). https://doi.org/10.1007/s10555-020-09871-0

    Article  CAS  Google Scholar 

  49. B.J. Metge, A.R. Frost, J.A. King, D.L. Dyess, D.R. Welch, R.S. Samant, L.A. Shevde, Epigenetic silencing contributes to the loss of BRMS1 expression in breast cancer. Clin. Exp. Metastasis 25(7), 753–763 (2008). https://doi.org/10.1007/s10585-008-9187-x

    Article  CAS  Google Scholar 

  50. A.S. Nagji, Y. Liu, E.B. Stelow, G.J. Stukenborg, D.R. Jones, BRMS1 transcriptional repression correlates with CpG island methylation and advanced pathological stage in non-small cell lung cancer. J. Pathol. 221(2), 229–237 (2010). https://doi.org/10.1002/path.2707

    Article  CAS  Google Scholar 

  51. P.A. Phadke, K.S. Vaidya, K.T. Nash, D.R. Hurst, D.R. Welch, BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. Am. J. Pathol. 172(3), 809–817 (2008). https://doi.org/10.2353/ajpath.2008.070772

    Article  CAS  Google Scholar 

  52. M.D. Edmonds, D.R. Hurst, K.S. Vaidya, L.J. Stafford, D. Chen, D.R. Welch, Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. Int. J. Cancer 125(8), 1778–1785 (2009). https://doi.org/10.1002/ijc.24616

    Article  CAS  Google Scholar 

  53. G. Fulci, N. Ishii, E.G. Van Meir, p53 and brain tumors: from gene mutations to gene therapy. Brain Pathol. 8(4), 599–613 (1998)

    Article  CAS  Google Scholar 

  54. L.M. Cook, X. Cao, A.E. Dowell, M.T. Debies, M.D. Edmonds, B.H. Beck, R.A. Kesterson, R.A. Desmond, A.R. Frost, D.R. Hurst, D.R. Welch, Ubiquitous Brms1 expression is critical for mammary carcinoma metastasis suppression via promotion of apoptosis. Clin. Exp. Metastasis 29(4), 315–325 (2012). https://doi.org/10.1007/s10585-012-9452-x

    Article  CAS  Google Scholar 

  55. C.M. Lopes-Ramos, J.N. Paulson, C.Y. Chen, M.L. Kuijjer, M. Fagny, J. Platig, A.R. Sonawane, D.L. DeMeo, J. Quackenbush, K. Glass, Regulatory network changes between cell lines and their tissues of origin. BMC Genom. 18(1), 723 (2017). https://doi.org/10.1186/s12864-017-4111-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Chandra Sekhar from the Krishna Institute of Medical Sciences, India, for helping in the clinicopathological assessments. We also acknowledge all members of the PPB laboratory, especially Dr. Anwita Mudiraj and Dr. Ravindra Pramod Deshpande for their valuable contributions to the manuscript.

Funding

We acknowledge the financial assistance to the Lab from the Ministry of Science and Technology, Department of Science and Technology, Govt. of India, DST- SERB Core grant, file No. SR/CSRI/196/2016, and CRG/2020/005021, Department of Biotechnology, Govt. of India, BT/PR18168/MED/29/1064/2016, BT/PR17686/MED/30/1664/2016, and financial support to the University of Hyderabad-IoE by the Ministry of Education, Govt. of India F11/9/2019-U3 (A), and DST-FIST, and UGC-SAP for the department. D.B. acknowledges the Department of Biotechnology (DBT) India for the student fellowship (Award no: DBT/2013/UOH/79).

Author information

Authors and Affiliations

Authors

Contributions

DB and PPB designed the study. DB and CR performed the experiments. DB and MP collected the tumor samples and the related clinical information. DB, CR, MP and PPB analyzed the data. DB drafted the manuscript. DB and PPB finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Prakash Babu Phanithi.

Ethics declarations

Ethical approval and consent to participate

All procedures performed in this study involving human participants were approved by the Institutional Ethics Committee (IEC), University of Hyderabad, Hyderabad (TS), India, with IEC reference number UH/IEC/2016/180. Written informed consent was obtained from all participants included in the study.

Consent for publication

Not applicable.

Conflict of interest/Competing interests

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 290 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, D., Chintal, R., Panigrahi, M. et al. Distinct expression and function of breast cancer metastasis suppressor 1 in mutant P53 glioblastoma. Cell Oncol. 45, 1451–1465 (2022). https://doi.org/10.1007/s13402-022-00729-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00729-x

Keywords

Navigation