Skip to main content

Advertisement

Log in

AKT inhibition sensitizes EVI1 expressing colon cancer cells to irinotecan therapy by regulating the Akt/mTOR axis

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Ecotropic viral integration site 1 (EVI1) is an oncogenic transcription factor that has been attributed to chemotherapy resistance in different cancers. As yet, however, its role in colon cancer drug resistance is not completely understood. Here, we set out to investigate the functional and therapeutic relevance of EVI1 in colon cancer drug resistance.

Methods

The EVI1 gene was knocked down in colon cancer cells that were subsequently tested for susceptibility to irinotecan using in vitro assays and in vivo subcutaneous mouse colon cancer models. The effect of EVI1 knockdown on the AKT-mTOR signaling pathway was assessed using cell line models, immunohistochemistry and bioinformatics tools. The anti-proliferative activity of AKT inhibitor GSK690693 and its combination with irinotecan was tested in colon cancer cell line models (2D and 3D). Finally, the therapeutic efficacy of GSK690693 and its combination with irinotecan was evaluated in xenografted EVI1 expressing colon cancer mouse models.

Results

We found that EVI1 knockdown decreased cancer stem cell-like properties and improved irinotecan responses in both cell line and subcutaneous mouse models. In addition, we found that EVI1 downregulation resulted in inhibition of AKT/mTOR signaling and RICTOR expression. Knocking down RICTOR expression increased the cytotoxic effects of irinotecan in EVI1 downregulated colon cancer cells. Co-treatment with irinotecan and ATP-competitive AKT inhibitor GSK690693 significantly reduced colon cancer cell survival and tumor progression rates.

Conclusion

Inhibition of the AKT signaling cascade by GSK690693 may serve as an alternative to improve the irinotecan response in EVI1-expressing colon cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This article contains supporting information.

References

  1. C. Birdwell, W. Fiskus, T.M. Kadia, C.D. DiNardo, C.P. Mill, K.N. Bhalla, EVI1 dysregulation: Impact on biology and therapy of myeloid malignancies. Blood Cancer J. 11, 1–4 (2021)

    Article  Google Scholar 

  2. A.S. Perkins, J.A. Mercer, N.A. Jenkins, N.G. Copeland, Patterns of Evi-1 expression in embryonic and adult tissues suggest that Evi-1 plays an important regulatory role in mouse development. Development 111, 479–487 (1991)

    Article  CAS  PubMed  Google Scholar 

  3. K. Suzukawa, E. Parganas, A. Gajjar, T. Abe, S. Takahashi, K. Tani, S. Asano, H. Asou, N. Kamada, J. Yokota, Identification of a breakpoint cluster region 3'of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv (3) (q21q26). Blood 15, 2681–2688 (1994)

    Article  Google Scholar 

  4. K. Morishita, D.S. Parker, M.L. Mucenski, N.A. Jenkins, N.G. Copeland, J.N. Ihle, Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 54, 831–840 (1988)

    Article  CAS  PubMed  Google Scholar 

  5. S. Buonamici, D. Li, Y. Chi, R. Zhao, X. Wang, L. Brace, H. Ni, Y. Saunthararajah, G. Nucifora, EVI1 induces myelodysplastic syndrome in mice. J. Clin. Invest. 114, 713–719 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. K.B. Nayak, I.S. Sajitha, T.S. Kumar, S. Chakraborty, Ecotropic viral integration site 1 promotes metastasis independent of epithelial mesenchymal transition in colon cancer cells. Cell Death Dis. 9, 1–3 (2018)

    Article  CAS  Google Scholar 

  7. H. Ma, Y. Li, X. Wang, H. Wu, G. Qi, R. Li, N. Yang, M. Gao, S. Yan, C. Yuan, B. Kong, PBK, targeted by EVI1, promotes metastasis and confers cisplatin resistance through inducing autophagy in high-grade serous ovarian carcinoma. Cell Death Dis. 10, 1–5 (2019)

    Article  CAS  Google Scholar 

  8. N. Yamakawa, K. Kaneda, Y. Saito, E. Ichihara, K. Morishita, The increased expression of integrin α6 (ITGA6) enhances drug resistance in EVI1high leukemia. PLoS One 7, e30706 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H. Yamamoto, J. Lu, S. Oba, T. Kawamata, A. Yoshimi, N. Kurosaki, K. Yokoyama, H. Matsushita, M. Kurokawa, A. Tojo, K. Ando, miR-133 regulates Evi1 expression in AML cells as a potential therapeutic target. Sci. Rep. 6, 1–6 (2016)

    Article  CAS  Google Scholar 

  10. Y. Niu, X. Yang, Y. Chen, X. Jin, L. Li, Y. Guo, X. Li, Y. Xie, Y. Zhang, H. Wang, EVI1 induces autophagy to promote drug resistance via regulation of ATG7 expression in leukemia cells. Carcinogenesis 41, 961–971 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. M.T. Seymour, T.S. Maughan, J.A. Ledermann, C. Topham, R. James, S.J. Gwyther, D.B. Smith, S. Shepherd, A. Maraveyas, D.R. Ferry, A.M. Meade, Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): A randomized controlled trial. Lancet 370, 143–152 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. C. Fuchs, E.P. Mitchell, P.M. Hoff, Irinotecan in the treatment of colorectal cancer. Cancer Treat. Rev. 32, 491–503 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. Z.S. Chen, T. Furukawa, T. Sumizawa, K. Ono, K. Ueda, K. Seto, S.I. Akiyama, ATP-dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P. Mol. Pharmacol. 55, 921–928 (1999)

    CAS  PubMed  Google Scholar 

  14. J. Cummings, G. Boyd, B.T. Ethell, J.S. Macpherson, B. Burchell, J.F. Smyth, D.I. Jodrell, Enhanced clearance of topoisomerase I inhibitors from human colon cancer cells by glucuronidation. Biochem. Pharmacol. 63, 607–613 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Z.A. Rasheed, E.H. Rubin, Mechanisms of resistance to topoisomerase I-targeting drugs. Oncogene 22, 7296–7304 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Xu, M.A. Villalona-Calero, Irinotecan: Mechanisms of tumor resistance and novel strategies for modulating its activity. Ann. Oncol. 13, 1841–1851 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. C. Meisenberg, M.E. Ashour, L. El-Shafie, C. Liao, A. Hodgson, A. Pilborough, S.A. Khurram, J.A. Downs, S.E. Ward, S.F. El-Khamisy, Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Nucleic Acids Res. 45, 1159–1176 (2017)

    CAS  PubMed  Google Scholar 

  18. S. Paillas, F. Boissière, F. Bibeau, A. Denouel, C. Mollevi, A. Causse, V. Denis, N. Vezzio-Vié, L. Marzi, C. Cortijo, I. Ait-Arsa, Targeting the p38 MAPK pathway inhibits irinotecan resistance in colon adenocarcinoma. Cancer Res. 71, 1041–1049 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. B.L. Emmink, W.J. Van Houdt, R.G. Vries, F.J. Hoogwater, K.M. Govaert, A. Verheem, M.W. Nijkamp, E.J. Steller, C.R. Jimenez, H. Clevers, I.H. Rinkes, Differentiated human colorectal cancer cells protect tumor-initiating cells from irinotecan. Gastroenterology 141, 269–278 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. D. Wang, J. Chen, H. Chen, Z. Duan, Q. Xu, M. Wei, L. Wang, M. Zhong, Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway. J. Biosci. 37, 91–101 (2012)

    Article  PubMed  CAS  Google Scholar 

  21. T.C. Cheng, Z.H. Din, J.H. Su, Y.J. Wu, C.I. Liu, Sinulariolide suppresses cell migration and invasion by inhibiting matrix metalloproteinase-2/−9 and urokinase through the PI3K/AKT/mTOR signaling pathway in human bladder cancer cells. Mar. Drugs 15, 238 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  22. K. Malinowsky, U. Nitsche, K.P. Janssen, F.G. Bader, C. Späth, E. Drecoll, G. Keller, H. Höfler, J. Slotta-Huspenina, K.F. Becker, Activation of the PI3K/AKT pathway correlates with prognosis in stage II colon cancer. Br. J. Cancer 110, 2081–2089 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. T. Colakoglu, S. Yildirim, F. Kayaselcuk, T.Z. Nursal, A. Ezer, T. Noyan, H. Karakayali, M. Haberal, Clinicopathological significance of PTEN loss and the phosphoinositide 3-kinase/Akt pathway in sporadic colorectal neoplasms: Is PTEN loss predictor of local recurrence. Am. J. Surg. 195, 719–725 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. P. Malkomes, I. Lunger, A. Luetticke, E. Oppermann, N. Haetscher, H. Serve, K. Holzer, W.O. Bechstein, M.A. Rieger, Selective AKT inhibition by MK-2206 represses colorectal cancer-initiating stem cells. Ann. Surg. Oncol. 23, 2849–2857 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  25. L. Sun, Y. Huang, Y. Liu, Y. Zhao, X. He, L. Zhang, F. Wang, Y. Zhang, Ipatasertib, a novel Akt inhibitor, induces transcription factor FoxO3a and NF-κB directly regulates PUMA-dependent apoptosis. Cell Death Dis. 9, 1–3 (2018)

    Article  CAS  Google Scholar 

  26. Y. Liu, Y. Huang, J. Ding, N. Liu, S. Peng, J. Wang, F. Wang, Y. Zhang, Targeting Akt by SC66 triggers GSK-3β mediated apoptosis in colon cancer therapy. Cancer Cell Int. 19, 124 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  27. P.T. Makondi, C.M. Chu, P.L. Wei, Y.J. Chang, Prediction of novel target genes and pathways involved in irinotecan-resistant colorectal cancer. PLoS One 12, e0180616 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Y. Liu, L. Chen, T.C. Ko, A.P. Fields, E.A. Thompson, Evi1 is a survival factor which conveys resistance to both TGF β-and taxol-mediated cell death via PI3K/AKT. Oncogene 25, 3565–3575 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. R. Herr, S. Halbach, M. Heizmann, H. Busch, M. Boerries, T. Brummer, BRAF inhibition upregulates a variety of receptor tyrosine kinases and their downstream effector Gab2 in colorectal cancer cell lines. Oncogene 37, 1576–1593 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. V. Suresh, R. Sundaram, P. Dash, S.C. Sabat, D. Mohapatra, S. Mohanty, D. Vasudevan, S. Senapati, Macrophage migration inhibitory factor of Syrian golden hamster shares structural and functional similarity with human counterpart and promotes pancreatic cancer. Sci. Rep. 9, 1–6 (2019)

    Article  CAS  Google Scholar 

  31. P.G. Oliver, A.F. LoBuglio, K.R. Zinn, H. Kim, L. Nan, T. Zhou, W. Wang, D.J. Buchsbaum, Treatment of human colon cancer xenografts with TRA-8 anti-death receptor 5 antibody alone or in combination with CPT-11. Clin. Cancer Res. 14, 2180–2189 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. V. Pradeepa, V.K. Suresh, K.B. Singh, S. Nayak, S. Senapati, Chakraborty, EVI1 promotes metastasis by downregulating TIMP2 in metastatic colon and breast cancer cells. Int. J. Biochem. Cell Biol. 142, 106118 (2022)

    Article  CAS  PubMed  Google Scholar 

  33. B.M. Slomovitz, R.L. Coleman, The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin. Cancer Res. 18, 5856–5864 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. J. Yi, J. Zhu, J. Wu, C.B. Thompson, X. Jiang, Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl. Acad. Sci. U. S. A. 117, 31189–31197 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D. Reita, C. Bour, R. Benbrika, A. Groh, E. Pencreach, E. Guérin, D. Guenot, Synergistic anti-tumor effect of mTOR inhibitors with irinotecan on colon cancer cells. Cancers 11, 1581 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  36. O.S. Kustikova, A. Schwarzer, M. Stahlhut, M.H. Brugman, T. Neumann, M. Yang, Z. Li, A. Schambach, N. Heinz, S. Gerdes, I. Roeder, Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells. Leukemia 27, 1127–1138 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. Y. Zhou, L. Xia, H. Wang, L. Oyang, M. Su, Q. Liu, J. Lin, S. Tan, Y. Tian, Q. Liao, D. Cao, Cancer stem cells in progression of colorectal cancer. Oncotarget. 9, 33403 (2018)

    Article  PubMed  Google Scholar 

  38. H.M. Zhou, J.G. Zhang, X. Zhang, Q. Li, Targeting cancer stem cells for reversing therapy resistance: Mechanism, signaling, and prospective agents. Signal Transduct. Target Ther. 6, 1–7 (2021)

    CAS  Google Scholar 

  39. X.M. Zhang, Z.L. Liu, B. Qiu, Y.F. Xu, C. Pan, Z.L. Zhang, Downregulation of EVI1 expression inhibits cell proliferation and induces apoptosis in hilar cholangiocarcinoma via the PTEN/AKT Signalling pathway. J. Cancer 11, 1412 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. H.R. Kim, J. Yim, H.B. Yoo, S.E. Lee, S. Oh, S. Jung, C.I. Hwang, D.M. Shin, T. Kim, K.H. Yoo, Y.S. Kim, EVI1 activates tumor-promoting transcriptional enhancers in pancreatic cancer. NAR Cancer 3, zcab023 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  41. R. Liu, Y. Chen, G. Liu, C. Li, Y. Song, Z. Cao, W. Li, J. Hu, C. Lu, Y. Liu, PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 11, 1–2 (2020)

    Article  CAS  Google Scholar 

  42. A. Yoshimi, S. Goyama, N. Watanabe-Okochi, Y. Yoshiki, Y. Nannya, E. Nitta, S. Arai, T. Sato, M. Shimabe, M. Nakagawa, Y. Imai, Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 117, 3617–3628 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. A. Ghalali, Z.W. Ye, J. Högberg, U. Stenius, Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and PH domain and leucine-rich repeat phosphatase cross-talk (PHLPP) in cancer cells and in transforming growth factor β-activated stem cells. J. Biol. Chem. 289, 11601–11616 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. I. Vivanco, C.L. Sawyers, The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002)

    Article  CAS  PubMed  Google Scholar 

  45. D.D. Sarbassov, D.A. Guertin, S.M. Ali, D.M. Sabatini, Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005)

    Article  CAS  PubMed  Google Scholar 

  46. A. Im-aram, L. Farrand, S.M. Bae, G. Song, Y.S. Song, J.Y. Han, B.K. Tsang, The mTORC2 component rictor contributes to cisplatin resistance in human ovarian cancer cells. PLoS One 8, e75455 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C.T. Chiang, A.N. Demetriou, N. Ung, N. Choudhury, K. Ghaffarian, D.L. Ruderman S.M., Mumenthaler, mTORC2 contributes to the metabolic reprogramming in EGFR tyrosine-kinase inhibitor resistant cells in non-small cell lung cancer. Cancer Lett. 434, 152–159 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. L. Wang, J. Qi, J. Yu, H. Chen, Z. Zou, X. Lin, L. Guo, Overexpression of Rictor protein in colorectal cancer is correlated with tumor progression and prognosis. Oncol. Lett. 14, 6198–6202 (2017)

    PubMed  PubMed Central  Google Scholar 

  49. D. Zhao, M. Jiang, X. Zhang, H. Hou, The role of RICTOR amplification in targeted therapy and drug resistance. Mol. Med. 26, 1–1 (2020)

    Article  Google Scholar 

  50. C.K. Wong, A.W. Lambert, S. Ozturk, P. Papageorgis, D. Lopez, N. Shen, Z. Sen, H.M. Abdolmaleky, B. Győrffy, H. Feng, S. Thiagalingam, Targeting RICTOR sensitizes SMAD4-negative colon cancer to irinotecan. Mol. Cancer Res. 18, 414–423 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. S. Fang, X. Wan, X. Zou, S. Sun, X. Hao, C. Liang, Z. Zhang, F. Zhang, B. Sun, H. Li, B. Yu, Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis. 12, 1–8 (2021)

    Article  CAS  Google Scholar 

  52. D.A. Altomare, L. Zhang, J. Deng, A. Di Cristofano, A.J. Klein-Szanto, R. Kumar, J.R. Testa, GSK690693 delays tumor onset and progression in genetically defined mouse models expressing activated Akt. Clin. Cancer Res. 16, 486–496 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. N. Rhodes, D.A. Heerding, D.R. Duckett, D.J. Eberwein, V.B. Knick, T.J. Lansing, R.T. McConnell, T.M. Gilmer, S.Y. Zhang, K. Robell, J.A. Kahana, Characterization of an Akt kinase inhibitor with potent pharmacodynamic and antitumor activity. Cancer Res. 68, 2366–2374 (2008)

    Article  CAS  PubMed  Google Scholar 

  54. E.H. Jeong, H.S. Choi, T.G. Lee, H.R. Kim, C.H. Kim, Dual inhibition of PI3K/Akt/mTOR pathway and role of autophagy in non-small cell lung cancer cells. Tuberc. Respir. Dis. 72, 343–351 (2012)

    Article  Google Scholar 

  55. Z. Li, S. Yan, N. Attayan, S. Ramalingam, C.J. Thiele, Combination of an allosteric Akt inhibitor MK-2206 with etoposide or rapamycin enhances the antitumor growth effect in neuroblastoma. Clin. Cancer Res. 18, 3603–3615 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. G. Hou, Q. Zhao, M. Zhang, T. Fan, M. Liu, X. Shi, Y. Ren, Y. Wang, J. Zhou, Z. Lu, Down-regulation of Rictor enhances cell sensitivity to PI3K inhibitor LY294002 by blocking mTORC2-medicated phosphorylation of Akt/PRAS40 in esophageal squamous cell carcinoma. Biomed. Pharmacother. 106, 1348–1356 (2018)

    Article  CAS  PubMed  Google Scholar 

  57. H. Li, X. Shen, M. Ma, W. Liu, W. Yang, P. Wang, Z. Cai, R. Mi, Y. Lu, J. Zhuang, Y. Jiang, ZIP10 drives osteosarcoma proliferation and chemoresistance through ITGA10-mediated activation of the PI3K/AKT pathway. J. Exp. Clin. Cancer Res. 40, 1–6 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P is supported by the National Post-Doctoral Fellowship (PDF/2018/000531), Science & Engineering Research Board, Department of Science and Technology, Government of India. VS is supported by the Council of Scientific and Industrial Research (CSIR), Government of India. The authors would like to acknowledge the help of Dr. Murali Dharan Bashyam and K. Viswakalyan from the Centre for DNA Fingerprinting and Diagnostics for providing the TMA slides.

Funding

The work was partly supported by intramural funding from the host institution and partly by a National Post-Doctoral Fellowship (PDF/2018/000531), Science & Engineering Research Board, Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

SC and P designed the experiments. P performed the in vitro studies, animal experiments and data acquisition. VS performed all the assays related to IHC. SBS did the IHC assays and scored the slides. P wrote the manuscript. SC reviewed and corrected the manuscript and arranged the funds. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Soumen Chakraborty.

Ethics declarations

Ethical approval and consent to participate

All animal protocols were performed with the approval of the Institute of Life Sciences (ILS/IAEC-130-AH/AUG-18) animal ethics committee. Consent to participate is not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeepa, Suresh, V., Senapati, S. et al. AKT inhibition sensitizes EVI1 expressing colon cancer cells to irinotecan therapy by regulating the Akt/mTOR axis. Cell Oncol. 45, 659–675 (2022). https://doi.org/10.1007/s13402-022-00690-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00690-9

Keywords

Navigation