Skip to main content

Advertisement

Log in

Functional relationship between CFTR and RAC3 expression for maintaining cancer cell stemness in human colorectal cancer

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

CFTR mutations not only cause cystic fibrosis, but also increase the risk of colorectal cancer. A putative role of CFTR in colorectal cancer patients without cystic fibrosis has so far, however, not been investigated. RAC3 is a nuclear receptor coactivator that has been found to be overexpressed in several human tumors, and to be required for maintaining cancer stemness. Here, we investigated the functional relationship between CFTR and RAC3 for maintaining cancer stemness in human colorectal cancer.

Methods

Cancer stemness was investigated by analysing the expression of stem cell markers, clonogenic growth and selective retention of fluorochrome, using stable transfection of shCFTR or shRAC3 in HCT116 colorectal cancer cells. In addition, we performed pathway enrichment and network analyses in both primary human colorectal cancer samples (TCGA, Xena platform) and Caco-2 colorectal cancer cells including (1) CD133+ or CD133- side populations and (2) CFTRwt or CFTRmut cells (ConsensusPathDB, STRING, Cytoscape, GeneMANIA).

Results

We found that the CD133+ side population expresses higher levels of RAC3 and CFTR than the CD133- side population. RAC3 overexpression increased CFTR expression, whereas CFTR downregulation inhibited the cancer stem phenotype. CFTR mRNA levels were found to be increased in colorectal cancer samples from patients without cystic fibrosis compared to those with CFTR mutations, and this correlated with an increased expression of RAC3. The expression pattern of a gene set involved in inflammatory response and nuclear receptor modulation in CD133+ Caco-2 cells was found to be shared with that in CFTRwt Caco-2 cells. These genes may contribute to colorectal cancer development.

Conclusions

CFTR may play a non-tumor suppressor role in colorectal cancer development and maintenance involving enhancement of the expression of a set of genes related to cancer stemness and development in patients without CFTR mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

ABC transporters:

ATP-Binding Cassette transporters

ATP:

Adenosine Triphosphate

BSA:

Bovine Serum Albumin

CFTR:

Cystic Fibrosis Transmembrane Conductance Regulator

EGF:

Epidermal Growth Factor

MDR:

Multiple Drug Resistance

NF-ҡB:

Nuclear Factor Kappa B

OCT4:

Octamer-Binding Transcription Factor 4

PBS:

Phosphate Buffered Saline

PPI:

Protein-Protein Interaction

shCFTR:

Short Hairpin for CFTR

shRAC3:

Short Hairpin for RAC3

TNF:

Tumor Necrosis Factor

References

  1. K.J. Anderson, R.T. Cormier, P.M. Scott, Role of ion channels in gastrointestinal cancer. World J. Gastroenterol. 25, 5732–5772 (2019). https://doi.org/10.3748/wjg.v25.i38.5732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A.G. Palma, L. Galizia, B.A. Kotsias, G.I. Marino, CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein. Eur. J. Physiol. 468, 871–880 (2016). https://doi.org/10.1007/s00424-016-1800-2

    Article  CAS  Google Scholar 

  3. D.G. Tang, Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 22, 457–472 (2012). doi:https://doi.org/10.1038/cr.2012.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. P. Scott, K. Anderson, M. Singhania, R. Cormier, Cystic fibrosis, CFTR, and colorectal cancer. Int. J. Mol. Sci. 21, 2891 (2020). https://doi.org/10.3390/ijms21082891

    Article  CAS  PubMed Central  Google Scholar 

  5. B.L. Than, J.F. Linnekamp, T.K. Starr, D.A. Largaespada, A. Rod, Y. Zhang, V. Bruner, J. Abrahante, A. Schumann, T. Luczak, J. Walter, A. Niemczyk, M.G. O’Sullivan, J.P. Medema, R.J. Fijneman, G.A. Meijer, E. Van den Broek, C.A. Hodges, P.M. Scott, L. Vermeulen, R.T. Cormier, CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene 35, 4179–4187 (2016). https://doi.org/10.1038/onc.2015.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. B.B. Tysnes, R. Bjerkvig, Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim. Biophys. Acta 1775, 283–297 (2007). doi:https://doi.org/10.1016/j.bbcan.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  7. C.T. Jordan, M.L. Guzman, M. Noble, Cancer stem cells. N. Engl. J. Med. 355, 1253–1261 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. C. Sakakura, A. Hagiwara, R. Yasuoka, Y. Fujita, M. Nakanishi, K. Masuda, A. Kimura, Y. Nakamura, J. Inazawa, T. Abe, H. Yamagishi, Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers. Int. J. Cancer 89, 217–223 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. S. Anzick, J. Kononen, R. Walker, D. Azorsa, M. Tanner, X. Guan, G. Sauter, O. Kallioniemi, J. Trent, P. Meltzer, AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. R.T. Henke, B.R. Haddad, S.E. Kim, J.D. Rone, A. Mani, J.M. Jessup, A. Wellstein, A. Maitra, A.T. Riegel, Overexpression of the nuclear receptor coactivator AIB1 (SRC-3) during progression of pancreatic adenocarcinoma. Clin. Cancer Res. 10, 6134–6142 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. H.J. Zhou, J. Yan, W. Luo, G. Ayala, S.H. Lin, H. Erdem, M. Ittmann, S.Y. Tsai, M.J. Tsai, SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res. 65, 7976–7983 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. L.C. Panelo, M.S. Machado, M.F. Rubio, F. Jaworski, C.V. Alvarado, L.A. Paz, A.J. Urtreger, E. Vazquez, M.A. Costas, High RAC3 expression levels are required for induction and maintaining of cancer cell stemness. Oncotarget 9, 5848–5860 (2018). doi:https://doi.org/10.18632/oncotarget.23635

    Article  PubMed  Google Scholar 

  13. M.S. Machado, F.D. Rosa, M.C. Lira, A.J. Urtreger, M.F. Rubio, M.A. Costas, The inflammatory cytokine TNF contributes with RAC3-induced malignant transformation. EXCLI J. 17, 1030–1042 (2018). https://doi.org/10.17179/excli2018-1759

    Article  PubMed  PubMed Central  Google Scholar 

  14. S. Werbajh, I. Nojek, R. Lanz, M.A. Costas, RAC-3 is a NF-kB coactivator. FEBS Lett. 485, 195–199 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. G.P. Colo, R.R. Rosato, S. Grant, M.A. Costas, RAC3 down-regulation sensitizes human chronic myeloid leukemia cells to TRAIL-induced apoptosis. FEBS Lett. 581, 5075–5081 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. G.P. Colo, M.F. Rubio, I.M. Nojek, S.E. Werbajh, P.C. Echeverria, C.V. Alvarado, V.E. Nahmod, M.D. Galigniana, M.A. Costas, The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action. Oncogene 27, 2430–2444 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. P.N. Fernandez Larrosa, M. Ruiz Grecco, D. Mengual Gomez, C.V. Alvarado, L.C. Panelo, M.F. Rubio, D.F. Alonso, D.E. Gomez and M.A. Costas. RAC3 more than a nuclear receptor coactivator: a key inhibitor of senescence that is downregulated in aging. Cell Death Dis 6, e1902 (2015) https://doi.org/10.1038/cddis.2015.218

  18. M.F. Rubio, M.C. Lira, F.D. Rosa, A.D. Sambresqui, Salazar Guemes and M.A. Costas. RAC3 influences the chemoresistance of colon cancer cells through autophagy and apoptosis inhibition. Cancer Cell Int. 17, 111 (2017). https://doi.org/10.1186/s12935-017-0483-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. G. Ma, Y. Ren, K. Wang, J. He, SRC-3 has a role in cancer other than as a nuclear receptor coactivator. Int. J. Biol. Sci. 7, 664–672 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  20. C.V. Alvarado, M.F. Rubio, P.N. Fernandez Larrosa, L. Panelo, P.J. Azurmendi, M. Ruiz Grecco, G.A. Martínez-Noël, M.A. Costas, The levels of RAC3 expression are up regulated by TNF in the inflammatory response. FEBS Open Bio 4, 450–457 (2014). https://doi.org/10.1016/j.fob.2014.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N. Ameen, J. Alexis, P. Salas, Cellular localization of the cystic fibrosis transmembrane conductance regulator in mouse intestinal tract. Histochem. Cell Biol. 114, 69–75 (2000). doi:https://doi.org/10.1007/s004180000164

    Article  CAS  PubMed  Google Scholar 

  22. A.M. Strubberg, J. Liu, N.M. Walker, C.D. Stefanski, R.J. MacLeod, S.T. Magness, L.L. Clarke, Cftr modulates Wnt/beta-catenin signaling and stem cell proliferation in murine intestine. Cell. Mol. Gastroenterol. Hepatol. 5, 253–271 (2018). https://doi.org/10.1016/j.jcmgh.2017.11.013

    Article  PubMed  Google Scholar 

  23. G.M. Seigel, L.M. Campbell, High-throughput microtiter assay for Hoechst 33342 dye uptake. Cytotechnology 45, 155–160 (2004). doi:https://doi.org/10.1007/s10616-004-7256-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Hao, E.A. Roesch, A. Perez, R.L. Weiner, L.C. Henderson, L. Cummings, P. Consiglio, J. Pajka, A. Eisenberg, L. Yeh, C.U. Cotton, M.L. Drumm, Inactivation of CFTR by CRISPR/Cas9 alters transcriptional regulation of inflammatory pathways and other networks. J. Cyst. Fibros. 19, 34–39 (2020). https://doi.org/10.1016/j.jcf.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  25. R. Herwig, C. Hardt, M. Lienhard, A. Kamburov, Analyzing and interpreting genome data at the network level with ConsensusPathDB. Nat. Protoc. 11, 1889–1907 (2016). https://doi.org/10.1038/nprot.2016.117

    Article  CAS  PubMed  Google Scholar 

  26. M.J. Goldman, B. Craft, M. Hastie, K. Repecka, F. McDade, A. Kamath, A. Banerjee, Y. Luo, D. Rogers, A.N. Brooks, J. Zhu, D. Haussler, Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020). https://doi.org/10.1038/s41587-020-0546-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. X. Yu, Y. Lin, X. Yan, Q. Tian, L. Li, E.H. Lin, CD133, Stem cells, and cancer stem cells: Myth or reality? Curr. Colorect. Cancer Rep. 7, 253–259 (2011). https://doi.org/10.1007/s11888-011-0106-1

    Article  Google Scholar 

  28. K. Liu, X. Zhang, J.T. Zhang, L.L. Tsang, X. Jiang, H.C. Chan, Defective CFTR- beta-catenin interaction promotes NF-kappaB nuclear translocation and intestinal inflammation in cystic fibrosis. Oncotarget 7, 64030–64042 (2016). doi:https://doi.org/10.18632/oncotarget.11747

    Article  PubMed  PubMed Central  Google Scholar 

  29. L. Zeng, Q. Xiao, M. Chen, A. Margariti, D. Martin, A. Ivetic, H. Xu, J. Mason, W. Wang, G. Cockerill, K. Mori, J.Y. Li, S. Chien, Y. Hu, Q. Xu, Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis. Circulation 127, 1712–1722 (2013). doi:https://doi.org/10.1161/CIRCULATIONAHA.112.001337

    Article  CAS  PubMed  Google Scholar 

  30. P. Li, J. Singh, Y. Sun, X. Ma, P. Yuan, CFTR constrains the differentiation from mouse embryonic stem cells to intestine lineage cells. Biochem. Biophys. Res. Commun. 510, 322–328 (2019). https://doi.org/10.1016/j.bbrc.2019.01.100

    Article  CAS  PubMed  Google Scholar 

  31. R.A. Padua, N. Warren, D. Grimshaw, M. Smith, C. Lewis, J. Whittaker, P. Laidler, P. Wright, A. Douglas-Jones, P. Fenaux, A. Sharma, K. Horgan and R. West. The cystic fibrosis delta F508 gene mutation and cancer. Hum. Mut. 10, 45–48 (1997). https://doi.org/10.1002/(SICI)1098-1004(1997)10:1<45::AID-HUMU6>3.0.CO;2-L

  32. R.L. Jakab, A.M. Collaco, N.A. Ameen, Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am. J. Physiol. 300, G82–G98 (2011). https://doi.org/10.1152/ajpgi.00245.2010

    Article  CAS  Google Scholar 

  33. N. Barker, J.H. van Es, J. Kuipers, P. Kujala, M. van den Born, M. Cozijnsen, A. Haegebarth, J. Korving, H. Begthel, P.J. Peters, H. Clevers, Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007). doi:https://doi.org/10.1038/nature06196

    Article  CAS  PubMed  Google Scholar 

  34. U. Bedi, V.K. Mishra, D. Wasilewski, C. Scheel, S.A. Johnsen, Epigenetic plasticity: a central regulator of epithelial-to-mesenchymal transition in cancer. Oncotarget 5, 2016–2029 (2014). doi:https://doi.org/10.18632/oncotarget.1875

    Article  PubMed  PubMed Central  Google Scholar 

  35. X. Yang, T. Yan, Y. Gong, X. Liu, H. Sun, W. Xu, C. Wang, D. Naren, Y. Zheng, High CFTR expression in Philadelphia chromosome-positive acute leukemia protects and maintains continuous activation of BCR-ABL and related signaling pathways in combination with PP2A. Oncotarget 8, 24437–24448 (2017). https://doi.org/10.18632/oncotarget.15510

    Article  PubMed  PubMed Central  Google Scholar 

  36. G.I. Marino, B.A. Kotsias, Cystic fibrosis transmembrane regulator (CFTR) in human trophoblast BeWo cells and its relation to cell migration. Placenta 35, 92–98 (2014). doi:https://doi.org/10.1016/j.placenta.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  37. A.M. Crane, P. Kramer, J.H. Bui, W.J. Chung, X.S. Li, M.L. Gonzalez-Garay, F. Hawkins, W. Liao, D. Mora, S. Choi, J. Wang, H.C. Sun, D.E. Paschon, D.Y. Guschin, P.D. Gregory, D.N. Kotton, M.C. Holmes, E.J. Sorscher, B.R. Davis, Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Rep. 4, 569–577 (2015). https://doi.org/10.1016/j.stemcr.2015.02.005

    Article  CAS  Google Scholar 

  38. J.T. Zhang, Y. Wang, J.J. Chen, X.H. Zhang, J.D. Dong, L.L. Tsang, X.R. Huang, Z. Cai, H.Y. Lan, X.H. Jiang, H.C. Chan, Defective CFTR leads to aberrant beta-catenin activation and kidney fibrosis. Sci. Rep. 7, 5233 (2017). https://doi.org/10.1038/s41598-017-05435-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Z. Li, CD133: a stem cell biomarker and beyond. Exp. Hematol. Oncol. 2, 17 (2013). https://doi.org/10.1186/2162-3619-2-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J.M. Loo, A. Scherl, A. Nguyen, F.Y. Man, E. Weinberg, Z. Zeng, L. Saltz, P.B. Paty, S.F. Tavazoie, Extracellular metabolic energetics can promote cancer progression. Cell 160, 393–406 (2015). https://doi.org/10.1016/j.cell.2014.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas [PIP 11220150100118CO] and Agencia Nacional de Promoción Científica y Tecnológica [PICT 1424, PBID 2014].

Author information

Authors and Affiliations

Authors

Contributions

Alejandra Graciela Palma: methodology, investigation, visualization, formal analysis; Mileni Soares Machado: methodology, investigation, visualization; María Cecilia Lira: investigation, formal analysis; Francisco Rosa: investigation, formal analysis; María Fernanda Rubio: Review and editing, visualization; Gabriela Marino: formal analysis, visualization; Basilio Aristidis Kotsias: conceptualization, writing, review and editing; Mónica Alejandra Costas: supervision, conceptualization, funding acquisition, project administration, original draft writing, formal analysis, visualization.

Corresponding author

Correspondence to Mónica Alejandra Costas.

Ethics declarations

Conflicts of interest/competing interests

We wish to confirm that there are no known conflicts of interest associated with this publication and that there has been no significant financial support for this work that could have influenced its outcome. 

Ethics approval

Not applicable. 

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, A.G., Soares Machado, M., Lira, M.C. et al. Functional relationship between CFTR and RAC3 expression for maintaining cancer cell stemness in human colorectal cancer. Cell Oncol. 44, 627–641 (2021). https://doi.org/10.1007/s13402-021-00589-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00589-x

Keywords

Navigation