Skip to main content

Advertisement

Log in

In silico screening for ERα down modulators identifies thioridazine as an anti-proliferative agent in primary, 4OH-tamoxifen-resistant and Y537S ERα-expressing breast cancer cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Most breast cancers (BCs) express estrogen receptor α (ERα) and are treated with the endocrine therapy (ET) drugs 4OH-tamoxifen (Tam) and fulvestrant (ICI 182,780; ICI). Unfortunately, a high fraction of ET treated women relapses and becomes resistant to ET. Therefore, additional anti-BC drugs are needed. Recently, we proposed that the identification of novel anti-BC drugs can be achieved using modulation of the intracellular ERα content in BC cells as a pharmacological target. Here, we searched for Food and Drug Administration (FDA)-approved drugs that potentially modify the ERα content in BC cells.

Methods

We screened in silico more than 60,000 compounds to identify FDA-approved drugs with a gene signature similar to that of ICI. We identified mitoxantrone and thioridazine and tested them in primary, Tam-resistant and genome-edited Y537S ERα-expressing BC cells.

Results

We found that mitoxantrone and thioridazine induced ERα downmodulation and prevented MCF-7 BC cell proliferation. Interestingly, while mitoxantrone was found to be toxic for normal breast epithelial cells, thioridazine showed a preferential activity towards BC cells. Thioridazine also reduced the ERα content and prevented cell proliferation in primary, Tam-resistant and genome-edited Y537S ERα expressing BC cells.

Conclusions

We suggest that modulation of the intracellular ERα concentration in BC cells can be exploited in in silico screens to identify anti-BC drugs and uncover a re-purposing opportunity for thioridazine in the treatment of primary and metastatic ET resistant BCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Bertolini, V.P. Sukhatme, G. Bouche, Nature reviews. Clin. Oncol. 12, 732–742 (2015). https://doi.org/10.1038/nrclinonc.2015.169

    Article  Google Scholar 

  2. F. Lumachi, G. Luisetto, S.M. Basso, U. Basso, A. Brunello and V. Camozzi, Curr Med Chem 18, 513–522 (2011) doi: not available

  3. C. Thomas, J.A. Gustafsson, Nat. Rev. Cancer 11, 597–608 (2011). https://doi.org/10.1038/nrc3093

    Article  CAS  PubMed  Google Scholar 

  4. J. Chauvin, M. Lomazzi, The digital technology revolution and its impact on the public’s health. Eur. J. Pub. Health 27, 947 (2017). https://doi.org/10.1093/eurpub/ckx134

    Article  Google Scholar 

  5. S.E. Clare, P.L. Shaw, “Big Data” for breast cancer: where to look and what you will find. NPJ Breast Cancer 2, (2016). https://doi.org/10.1038/npjbcancer.2016.31

  6. D. Vidovic, A. Koleti, S.C. Schurer, Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action. Front. Genet. 5, 342 (2014). https://doi.org/10.3389/fgene.2014.00342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Busonero, S. Leone, F. Acconcia, Emetine induces estrogen receptor alpha degradation and prevents 17β-estradiol-induced breast cancer cell proliferation. Cell. Oncol. 40, 299–301 (2017). https://doi.org/10.1007/s13402-017-0322-z

    Article  CAS  Google Scholar 

  8. C. Busonero, S. Leone, C. Klemm, F. Acconcia, A functional drug re-purposing screening identifies carfilzomib as a drug preventing 17β-estradiol: ERα signaling and cell proliferation in breast cancer cells. Mol. Cell. Endocrinol. 460, 229–237 (2018). https://doi.org/10.1016/j.mce.2017.07.027

    Article  CAS  PubMed  Google Scholar 

  9. S. Leone, C. Busonero, F. Acconcia, A high throughput method to study the physiology of E2:ERα signaling in breast cancer cells. J. Cell. Physiol. 233, 3713–3722 (2017). https://doi.org/10.1002/jcp.26251

    Article  CAS  PubMed  Google Scholar 

  10. F. Acconcia, M. Fiocchetti, M. Marino, Xenoestrogen regulation of ERα/ERβ balance in hormone-associated cancers. Mol. Cell. Endocrinol. 457, 3–12 (2016). https://doi.org/10.1016/j.mce.2016.10.033

    Article  CAS  PubMed  Google Scholar 

  11. H.D. Soule, T.M. Maloney, S.R. Wolman, W.D. Peterson Jr., R. Brenz, C.M. McGrath, J. Russo, R.J. Pauley, R.F. Jones, S.C. Brooks, Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50, 6075–6086 (1990)

    CAS  PubMed  Google Scholar 

  12. J.M. Knowlden, I.R. Hutcheson, H.E. Jones, T. Madden, J.M. Gee, M.E. Harper, D. Barrow, A.E. Wakeling, R.I. Nicholson, Elevated Levels of Epidermal Growth Factor Receptor/c-erbB2 Heterodimers Mediate an Autocrine Growth Regulatory Pathway in Tamoxifen-Resistant MCF-7 Cells. Endocrinology 144, 1032–1044 (2003). https://doi.org/10.1210/en.2002-220620

    Article  CAS  PubMed  Google Scholar 

  13. A. Harrod, J. Fulton, V.T.M. Nguyen, M. Periyasamy, L. Ramos-Garcia, C.F. Lai, G. Metodieva, A. de Giorgio, R.L. Williams, D.B. Santos, P.J. Gomez, M.L. Lin, M.V. Metodiev, J. Stebbing, L. Castellano, L. Magnani, R.C. Coombes, L. Buluwela, S. Ali, Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene 36, 2286–2296 (2017). https://doi.org/10.1038/onc.2016.382

    Article  CAS  PubMed  Google Scholar 

  14. H.R. Chen, D.H. Sherr, Z. Hu, C. DeLisi, A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer. BMC Med. Genet. 9, 51 (2016). https://doi.org/10.1186/s12920-016-0212-7

    Article  CAS  Google Scholar 

  15. L. Zhu, J. Liu, Integration of a prognostic gene module with a drug sensitivity module to identify drugs that could be repurposed for breast cancer therapy. Comput. Biol. Med. 61, 163–171 (2015). https://doi.org/10.1016/j.compbiomed.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  16. A.M. Marchionatti, G. Picotto, C.J. Narvaez, J. Welsh, N.G. Tolosa de Talamoni, Antiproliferative action of menadione and 1,25(OH)2D3 on breast cancer cells. J. Steroid Biochem. Mol. Biol. 113, 227–232 (2009). https://doi.org/10.1016/j.jsbmb.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  17. C. Yau, C.C. Benz, Genes responsive to both oxidant stress and loss of estrogen receptor function identify a poor prognosis group of estrogen receptor positive primary breast cancers. Breast Cancer Research: BCR 10, R61 (2008). https://doi.org/10.1186/bcr2120

    Article  CAS  PubMed  Google Scholar 

  18. Y. Zhao, M.J. Laws, V.S. Guillen, Y. Ziegler, J. Min, A. Sharma, S.H. Kim, D. Chu, B.H. Park, S. Oesterreich, C. Mao, D.J. Shapiro, K.W. Nettles, J.A. Katzenellenbogen, B.S. Katzenellenbogen, Structurally Novel Antiestrogens Elicit Differential Responses from Constitutively Active Mutant Estrogen Receptors in Breast Cancer Cells and Tumors. Cancer Res. 77, 5602–5613 (2017). https://doi.org/10.1158/0008-5472.CAN-17-1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Bahreini, Z. Li, P. Wang, K.M. Levine, N. Tasdemir, L. Cao, H.M. Weir, S.L. Puhalla, N.E. Davidson, A.M. Stern, D. Chu, B.H. Park, A.V. Lee, S. Oesterreich, Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models. Breast Cancer Research: BCR 19, 60 (2017). https://doi.org/10.1186/s13058-017-0851-4

    Article  CAS  PubMed  Google Scholar 

  20. Z. Li, K.M. Levine, A. Bahreini, P. Wang, D. Chu, B.H. Park, S. Oesterreich, A.V. Lee, Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells. Endocrinology 159, 285–296 (2017). https://doi.org/10.1210/en.2017-00693

    Article  Google Scholar 

  21. T. Reinert, E.D. Saad, C.H. Barrios, J. Bines, Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer. Front. Oncol. 7, 26 (2017). https://doi.org/10.3389/fonc.2017.00026

    Article  PubMed  PubMed Central  Google Scholar 

  22. P. Totta, F. Gionfra, C. Busonero, F. Acconcia, Modulation of 17β-estradiol signaling on cellular proliferation by Caveolin-2. J. Cell. Physiol. 231, 1219–1225 (2015). https://doi.org/10.1002/jcp.25218

    Article  CAS  PubMed  Google Scholar 

  23. H.S. Rugo, R.B. Rumble, E. Macrae, D.L. Barton, H.K. Connolly, M.N. Dickler, L. Fallowfield, B. Fowble, J.N. Ingle, M. Jahanzeb, S.R. Johnston, L.A. Korde, J.L. Khatcheressian, R.S. Mehta, H.B. Muss and H.J. Burstein, Endocrine therapy for hormone receptor-positive metastatic breast cancer: American society of clinical oncology guideline J. Clin. Oncol. 34, 3069–3103 (2016). https://doi.org/10.1200/JCO.2016.67.1487

    Article  CAS  Google Scholar 

  24. W. Toy, H. Weir, P. Razavi, M. Lawson, A.U. Goeppert, A.M. Mazzola, A. Smith, J. Wilson, C. Morrow, W.L. Wong, E. De Stanchina, K.E. Carlson, T.S. Martin, S. Uddin, Z. Li, S. Fanning, J.A. Katzenellenbogen, G. Greene, J. Baselga, S. Chandarlapaty, Activating ESR1 mutations differentially affect the efficacy of ER antagonists. Cancer Discovery 7, 277–287 (2017). https://doi.org/10.1158/2159-8290.CD-15-1523

    Article  CAS  PubMed  Google Scholar 

  25. J.D. Joseph, B. Darimont, W. Zhou, A. Arrazate, A. Young, E. Ingalla, K. Walter, R.A. Blake, J. Nonomiya, Z. Guan, L. Kategaya, S.P. Govek, A.G. Lai, M. Kahraman, D. Brigham, J. Sensintaffar, N. Lu, G. Shao, J. Qian, K. Grillot, M. Moon, R. Prudente, E. Bischoff, K.J. Lee, C. Bonnefous, K.L. Douglas, J.D. Julien, J.Y. Nagasawa, A. Aparicio, J. Kaufman, B. Haley, J.M. Giltnane, I.E. Wertz, M.R. Lackner, M.A. Nannini, D. Sampath, L. Schwarz, H.C. Manning, M.N. Tantawy, C.L. Arteaga, R.A. Heyman, P.J. Rix, L. Friedman, N.D. Smith, C. Metcalfe and J.H. Hager, The selective estrogen receptor downregulator GDC-0810 is efficacious in diverse models of ER+ breast cancer. eLife 5, (2016). https://doi.org/10.7554/eLife.15828

  26. L.A. Martin, R. Ribas, N. Simigdala, E. Schuster, S. Pancholi, T. Tenev, P. Gellert, L. Buluwela, A. Harrod, A. Thornhill, J. Nikitorowicz-Buniak, A. Bhamra, M.O. Turgeon, G. Poulogiannis, Q. Gao, V. Martins, M. Hills, I. Garcia-Murillas, C. Fribbens, N. Patani, Z. Li, M.J. Sikora, N. Turner, W. Zwart, S. Oesterreich, J. Carroll, S. Ali, M. Dowsett, Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat. Commun. 8, 1865 (2017). https://doi.org/10.1038/s41467-017-01864-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Mao, M. Livezey, J.E. Kim, D.J. Shapiro, Antiestrogen resistant cell lines expressing estrogen receptor α mutations upregulate the unfolded protein response and are Killed by BHPI. Sci. Rep. 6, 34753 (2016). https://doi.org/10.1038/srep34753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. X. Wan, W. Zhang, L. Li, Y. Xie, W. Li, N. Huang, A new target for an old drug: Identifying mitoxantrone as a nanomolar inhibitor of PIM1 kinase via kinome-wide selectivity modeling. J. Med. Chem. 56, 2619–2629 (2013). https://doi.org/10.1021/jm400045y

    Article  CAS  PubMed  Google Scholar 

  29. X. Jiang, Z. Chen, G. Shen, Y. Jiang, L. Wu, X. Li, G. Wang, T. Yin, Psychotropic agent thioridazine elicits potent in vitro and in vivo anti-melanoma effects. Biomed. Pharmacother. 97, 833–837 (2017). https://doi.org/10.1016/j.biopha.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  30. R. Jeselsohn, G. Buchwalter, C. De Angelis, M. Brown, R. Schiff, ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nature Rev. Clin. Oncol. 12, 573–583 (2015). https://doi.org/10.1038/nrclinonc.2015.117

    Article  CAS  Google Scholar 

  31. E.A. Musgrove, R.L. Sutherland, Biological determinants of endocrine resistance in breast cancer. Nat. Rev. Cancer 9, 631–643 (2009). https://doi.org/10.1038/nrc2713

    Article  CAS  PubMed  Google Scholar 

  32. R. Jeselsohn, J.S. Bergholz, M. Pun, M. Cornwell, W. Liu, A. Nardone, T. Xiao, W. Li, X. Qiu, G. Buchwalter, A. Feiglin, K. Abell-Hart, T. Fei, P. Rao, H. Long, N. Kwiatkowski, T. Zhang, N. Gray, D. Melchers, R. Houtman, X.S. Liu, O. Cohen, N. Wagle, E.P. Winer, J. Zhao, M. Brown, Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell 33, 173–186 e175 (2018).https://doi.org/10.1016/j.ccell.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  33. J.S. Strobl and V.A. Peterson, Tamoxifen-resistant human breast cancer cell growth: inhibition by thioridazine, pimozide and the calmodulin antagonist, W-13.T. J. Pharmacol. Exp. Ther. 263, 186–193 (1992)

  34. L. Gelsomino, S. Panza, C. Giordano, I. Barone, G. Gu, E. Spina, S. Catalano, S. Fuqua, S. Ando, Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines. Cancer Lett. 428, 12–20 (2018). https://doi.org/10.1016/j.canlet.2018.04.023

    Article  CAS  PubMed  Google Scholar 

  35. R. Sharma, R. Sharma, T.P. Khaket, C. Dutta, B. Chakraborty, T.K. Mukherjee, Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. 40, 199–208 (2017). https://doi.org/10.1007/s13402-017-0324-x

    Article  CAS  Google Scholar 

  36. M. Godbole, K. Tiwary, R. Badwe, S. Gupta, A. Dutt, Progesterone suppresses the invasion and migration of breast cancer cells irrespective of their progesterone receptor status - a short report. Cell. Oncol. 40, 411–417 (2017). https://doi.org/10.1007/s13402-017-0330-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Ateneo Roma Tre to FA and from MIUR (Ricerca Corrente) to FB. The Grant of Excellence Departments, MIUR (ARTICOLO 1, COMMI 314 – 337 LEGGE 232/2016) to the Department of Science, University Roma TRE is also gratefully acknowledged. The authors thank also Prof. Simak Ali, University of London Imperial College, UK for gift of the Y537S-MCF-7 cells and Dr. Carol Dutkowski, University of Cardiff, UK for gift of the 4OH-tamoxifen resistant MCF-7 cells (Tam-Res). We thank Dr. Tommaso Colangelo and Orazio Palumbo, IRCCS Casa Sollievo della Sofferenza, Italy, for technical support (Affymetrix experiment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Acconcia.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Supplementary Materia 1

(TXT 439 bytes)

Supplementary Material 2

(TXT 1 kb)

Supplementary Material 3

(TXT 1 kb)

Supplementary Table 1

(XLSX 12 kb)

Supplementary Table 2

(XLSX 77 kb)

Supplementary Table 3

(XLSX 2868 kb)

Supplementary Table 4

(XLSX 2120 kb)

Supplementary Table 5

(XLSX 22 kb)

Supplementary Table 6

(XLSX 9 kb)

Supplementary Table 7

(XLSX 9 kb)

Supplementary Fig. 1

Characterization of metastatic breast cancer cell lines. (a) Number of MCF-7, ZR-75-1, Tam-Res MCF-7 and Y537S ERα-expressing MCF-7 (Y537S) cells treated with the indicated doses of 4OH-Tamoxifen (4OH-Tam) for 7 days. (b) Venn diagram depicting the genes upregulated in Y537S ERα-expressing MCF-7 cells in the dataset available in literature and in our affimetrix analysis. (c) Western blotting analyses of cathepsin D (Cat D) and presenilin 2 (pS2) expression levels in wild type MCF-7 (MCF-7) and Y537S ERα-expressing MCF-7 (Y537S) cells treated for 24 h with the indicated doses of 17β-estradiol (E2). The loading control was done by evaluating vinculin expression in the same filter. (d) Number of wild type MCF-7 (MCF-7) and Y537S ERα-expressing MCF-7 (Y537S) cells treated with 17β-estradiol (E2–10 nM) both in the presence and in the absence of 4OH-Tamoxifen (4OH-Tam – 1 μM) for 48 h. * indicates significant differences with respect to the control (DMSO, −) sample. ° indicates significant differences with respect to the E2 samples. (PPTX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busonero, C., Leone, S., Bianchi, F. et al. In silico screening for ERα down modulators identifies thioridazine as an anti-proliferative agent in primary, 4OH-tamoxifen-resistant and Y537S ERα-expressing breast cancer cells. Cell Oncol. 41, 677–686 (2018). https://doi.org/10.1007/s13402-018-0400-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-018-0400-x

Keywords

Navigation