Skip to main content

Advertisement

Log in

Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clinically relevant small-molecule inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation.

Methods

The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-positive and L1-negative variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, respectively.

Results

The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-positive glioblastoma-derived cells, down to the level of L1-negative cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-negative cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells.

Conclusions

We here show for the first time that small-molecule inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.Y. Wen, S. Kesari, Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. F.B. Furnari, T. Fenton, R.M. Bachoo, A. Mukasa, J.M. Stommel, A. Stegh, W.C. Hahn, K.L. Ligon, D.N. Louis, C. Brennan, L. Chin, R.A. DePinho, W.K. Cavenee, Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21, 2683–2710 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. S. Lee, S.R. Piccolo, K. Allen-Brady, Robust meta-analysis shows that glioma transcriptional subtyping complements traditional approaches. Cell. Oncol. 37, 317–329 (2014)

    Article  CAS  Google Scholar 

  4. P. De Bonis, C. Anile, A. Pompucci, A. Fiorentino, M. Balducci, S. Chiesa, L. Lauriola, G. Maira, A. Mangiola, The influence of surgery on recurrence pattern of glioblastoma. Clin. Neurol. Neurosurg. 115, 37–43 (2013)

    Article  PubMed  Google Scholar 

  5. R. Stupp, W.P. Mason, M.J. van den Bent, M. Weller, B. Fisher, M.J.B. Taphoorn, K. Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S.K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer, R.O. Mirimanoff, for the European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups and the National Cancer Institute of Canada Clinical Trials Group, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. N.R. Smoll, K. Schaller, O.P. Gautschi, Long-term survival of patients with glioblastoma multiforme (GBM). J. Clin. Neurosci. Off. J. Neurosurg. Soc. Aust. 20, 670–675 (2013)

    Google Scholar 

  7. A. Faissner, D.B. Teplow, D. Kübler, G. Keilhauer, V. Kinzel, M. Schachner, Biosynthesis and membrane topography of the neural cell adhesion molecule L1. EMBO J. 4, 3105–3113 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Moos, R. Tacke, H. Scherer, D. Teplow, K. Früh, M. Schachner, Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334, 701–703 (1988)

    Article  CAS  PubMed  Google Scholar 

  9. S. Chang, F.G. Rathjen, J.A. Raper, Extension of neurites on axons is impaired by antibodies against specific neural cell surface glycoproteins. J. Cell Biol. 104, 355–362 (1987)

    Article  CAS  PubMed  Google Scholar 

  10. G. Fischer, V. Künemund, M. Schachner, Neurite outgrowth patterns in cerebellar microexplant cultures are affected by antibodies to the cell surface glycoprotein L1. J. Neurosci. 6, 605–612 (1986)

  11. G. Keilhauer, A. Faissner, M. Schachner, Differential inhibition of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies. Nature 316, 728–730 (1985)

    Article  CAS  PubMed  Google Scholar 

  12. J. Lindner, F.G. Rathjen, M. Schachner, L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature 305, 427–430 (1983)

    Article  CAS  PubMed  Google Scholar 

  13. M. Conacci-Sorrell, A. Kaplan, S. Raveh, N. Gavert, T. Sakurai, A. Ben-Ze’ev, The shed ectodomain of Nr-CAM stimulates cell proliferation and motility, and confers cell transformation. Cancer Res. 65, 11605–11612 (2005)

  14. P.M. Wood, M. Schachner, R.P. Bunge, Inhibition of Schwann cell myelination in vitro by antibody to the L1 adhesion molecule. J. Neurosci. 10, 3635–3645 (1990)

  15. P. Liljelund, P. Ghosh, A.N. van den Pol, Expression of the neural axon adhesion molecule L1 in the developing and adult rat brain. J. Biol. Chem. 269, 32886–32895 (1994)

    CAS  PubMed  Google Scholar 

  16. T. Maretzky, M. Schulte, A. Ludwig, S. Rose-John, C. Blobel, D. Hartmann, P. Altevogt, P. Saftig, K. Reiss, L1 is sequentially processed by two differently activated metalloproteases and presenilin/γ-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol. Cell. Biol. 25, 9040–9053 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Fogel, S. Mechtersheimer, M. Huszar, A. Smirnov, A. Abu-Dahi, W. Tilgen, J. Reichrath, T. Georg, P. Altevogt, P. Gutwein, L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Lett. 189, 237–247 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. M. Fogel, P. Gutwein, S. Mechtersheimer, S. Riedle, A. Stoeck, A. Smirnov, L. Edler, A. Ben-Arie, M. Huszar, P. Altevogt, L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet 362, 869–875 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. N. Gavert, M. Conacci-Sorrell, D. Gast, A. Schneider, P. Altevogt, T. Brabletz, A. Ben-Ze’ev, L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J. Cell Biol. 168, 633–642 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Yang, S. Adla, M.K. Temburni, V.P. Patel, E.L. Lagow, O.A. Brady, J. Tian, M.I. Boulos, D.S. Galileo, Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule. Cancer Cell Int. 9, 27 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Y. Li, D.S. Galileo, Soluble L1CAM promotes breast cancer cell adhesion and migration in vitro, but not invasion. Cancer Cell Int. 10, 34 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  22. D. Chen, Z. Zeng, J. Yang, C. Ren, D. Wang, W. Wu, R. Xu, L1cam promotes tumor progression and metastasis and is an independent unfavorable prognostic factor in gastric cancer. J. Hematol. Oncol. 6, 43 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  23. P. Gutwein, S. Mechtersheimer, S. Riedle, A. Stoeck, D. Gast, S. Joumaa, H. Zentgraf, M. Fogel, D.P. Altevogt, ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J. 17, 292–294 (2003)

  24. H. Kiefel, S. Bondong, J. Hazin, J. Ridinger, U. Schirmer, S. Riedle, P. Altevogt, L1CAM: a major driver for tumor cell invasion and motility. Cell Adhes. Migr. 6, 374–384 (2012)

    Article  Google Scholar 

  25. M. Yang, Y. Li, K. Chilukuri, O.A. Brady, M.I. Boulos, J.C. Kappes, D.S. Galileo, L1 stimulation of human glioma cell motility correlates with FAK activation. J. Neurooncol. 105, 27–44 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. V. Mohanan, M.K. Temburni, J.C. Kappes, D.S. Galileo, L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor. Clin. Exp. Metastasis 30, 507–520 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. S. Mechtersheimer, P. Gutwein, N. Agmon-Levin, A. Stoeck, M. Oleszewski, S. Riedle, R. Postina, F. Fahrenholz, M. Fogel, V. Lemmon, P. Altevogt, Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J. Cell Biol. 155, 661–673 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. B. Felding-Habermann, S. Silletti, F. Mei, C.H. Siu, P.M. Yip, P.C. Brooks, D.A. Cheresh, T.E. O’Toole, M.H. Ginsberg, A.M. Montgomery, A single immunoglobulin-like domain of the human neural cell adhesion molecule L1 supports adhesion by multiple vascular and platelet integrins. J. Cell Biol. 139, 1567–1581 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A.M. Montgomery, J.C. Becker, C.H. Siu, V.P. Lemmon, D.A. Cheresh, J.D. Pancook, X. Zhao, R.A. Reisfeld, Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3. J. Cell Biol. 132, 475–485 (1996)

    Article  CAS  PubMed  Google Scholar 

  30. M. Oleszewski, S. Beer, S. Katich, C. Geiger, Y. Zeller, U. Rauch, P. Altevogt, Integrin and neurocan binding to L1 involves distinct Ig domains. J. Biol. Chem. 274, 24602–24610 (1999)

    Article  CAS  PubMed  Google Scholar 

  31. O. Ebeling, A. Duczmal, S. Aigner, C. Geiger, S. Schöllhammer, J.T. Kemshead, P. Möller, R. Schwartz-Albiez, P. Altevogt, L1 adhesion molecule on human lymphocytes and monocytes: expression and involvement in binding to alpha v beta 3 integrin. Eur. J. Immunol. 26, 2508–2516 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. S. Blaess, R.A. Kammerer, H. Hall, Structural analysis of the sixth immunoglobulin-like domain of mouse neural cell adhesion molecule L1 and its interactions with alpha(v)beta3, alpha(IIb)beta3, and alpha5beta1 integrins. J. Neurochem. 71, 2615–2625 (1998)

    Article  CAS  PubMed  Google Scholar 

  33. M. Ruppert, S. Aigner, M. Hubbe, H. Yagita, P. Altevogt, The L1 adhesion molecule is a cellular ligand for VLA-5. J. Cell Biol. 131, 1881–1891 (1995)

    Article  CAS  PubMed  Google Scholar 

  34. A. Duczmal, S. Schöllhammer, S. Katich, O. Ebeling, R. Schwartz-Albiez, P. Altevogt, The L1 adhesion molecule supports alpha v beta 3-mediated migration of human tumor cells and activated T lymphocytes. Biochem. Biophys. Res. Commun. 232, 236–239 (1997)

    Article  CAS  PubMed  Google Scholar 

  35. J. Zhao, J.-L. Guan, Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 28, 35–49 (2009)

    Article  PubMed  Google Scholar 

  36. S.K. Mitra, D.A. Hanson, D.D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. L. Ding, X. Sun, Y. You, N. Liu, Z. Fu, Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in human gliomas is associated with unfavorable overall survival. Transl. Res. J. Lab. Clin. Med. 156, 45–52 (2010)

    Article  CAS  Google Scholar 

  38. P. Doherty, F.S. Walsh, CAM-FGF receptor interactions: a model for axonal growth. Mol. Cell. Neurosci. 8, 99–111 (1996)

    Article  CAS  Google Scholar 

  39. P. Doherty, P. Smith, F.S. Walsh, Shared cell adhesion molecule (CAM) homology domains point to CAMs signalling via FGF receptors. Perspect. Dev. Neurobiol. 4, 157–168 (1996)

    CAS  PubMed  Google Scholar 

  40. P. Auguste, D.B. Gürsel, S. Lemière, D. Reimers, P. Cuevas, F. Carceller, J.P. Di Santo, A. Bikfalvi, Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis-dependent and -independent mechanisms. Cancer Res. 61, 1717–1726 (2001)

    CAS  PubMed  Google Scholar 

  41. B. Rousseau, F. Larrieu-Lahargue, S. Javerzat, F. Guilhem-Ducléon, F. Beermann, A. Bikfalvi, The tyrp1-Tag/tyrp1-FGFR1-DN bigenic mouse: a model for selective inhibition of tumor development, angiogenesis, and invasion into the neural tissue by blockade of fibroblast growth factor receptor activity. Cancer Res. 64, 2490–2495 (2004)

    Article  CAS  PubMed  Google Scholar 

  42. W. Loilome, A.D. Joshi, C.M.J. ap Rhys, S. Piccirillo, A.L. Vescovi, V.L. Angelo, G.L. Gallia, G.J. Riggins, Glioblastoma cell growth is suppressed by disruption of Fibroblast Growth Factor pathway signaling. J. Neurooncol. 94, 359–366 (2009)

    Article  CAS  PubMed  Google Scholar 

  43. M. Mohammadi, S. Froum, J.M. Hamby, M.C. Schroeder, R.L. Panek, G.H. Lu, A.V. Eliseenkova, D. Green, J. Schlessinger, S.R. Hubbard, Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 17, 5896–5904 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. R.E. Nisato, J.-C. Tille, A. Jonczyk, S.L. Goodman, M.S. Pepper, alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 6, 105–119 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. V.M. Golubovskaya, C. Nyberg, M. Zheng, F. Kweh, A. Magis, D. Ostrov, W.G. Cance, A small molecule inhibitor, 1,2,4,5-benzenetetraamine tetrahydrochloride, targeting the y397 site of focal adhesion kinase decreases tumor growth. J. Med. Chem. 51, 7405–7416 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. Han, A. Mistry, J.S. Chang, D. Cunningham, M. Griffor, P.C. Bonnette, H. Wang, B.A. Chrunyk, G.E. Aspnes, D.P. Walker, A.D. Brosius, L. Buckbinder, Structural characterization of proline-rich tyrosine kinase 2 (PYK2) reveals a unique (DFG-out) conformation and enables inhibitor design. J. Biol. Chem. 284, 13193–13201 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. J.S. Fotos, V.P. Patel, N.J. Karin, M.K. Temburni, J.T. Koh, D.S. Galileo, Automated time-lapse microscopy and high-resolution tracking of cell migration. Cytotechnology 51, 7–19 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  48. C. Mas-Moruno, F. Rechenmacher, H. Kessler, Cilengitide: the first anti-angiogenic small molecule drug candidate. Design, synthesis and clinical evaluation. Anticancer Agents Med. Chem. 10, 753–768 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M.V. Dieci, M. Arnedos, F. Andre, J.C. Soria, Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov. 3, 264–279 (2013)

    Article  CAS  PubMed  Google Scholar 

  50. A.N. Brooks, E. Kilgour, P.D. Smith, Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin. Cancer Res. 18, 1855–1862 (2012)

  51. F.J. Sulzmaier, C. Jean, D.D. Schlaepfer, FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer 14, 598–610 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. V.M. Golubovskaya, G. Huang, B. Ho, M. Yemma, C.D. Morrison, J. Lee, B.P. Eliceiri, W.G. Cance, Pharmacologic blockade of FAK autophosphorylation decreases human glioblastoma tumor growth and synergizes with temozolomide. Mol. Cancer Ther. 12, 162–172 (2013)

    Article  CAS  PubMed  Google Scholar 

  53. W.G. Roberts, E. Ung, P. Whalen, B. Cooper, C. Hulford, C. Autry, D. Richter, E. Emerson, J. Lin, J. Kath, K. Coleman, L. Yao, L. Martinez-Alsina, M. Lorenzen, M. Berliner, M. Luzzio, N. Patel, E. Schmitt, S. LaGreca, J. Jani, M. Wessel, E. Marr, M. Griffor, F. Vajdos, Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res. 68, 1935–1944 (2008)

    Article  CAS  PubMed  Google Scholar 

  54. W. Zhao, Comparison of L1 expression and secretion in glioblastoma and neuroblastoma cells. Oncol. Lett. 4, 812–816 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. V.M. Golubovskaya, Targeting FAK in human cancer: from finding to first clinical trials. Front. Biosci. Landmark Ed. 19, 687–706 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. G. Eisele, A. Wick, A.-C. Eisele, P.M. Clément, J. Tonn, G. Tabatabai, A. Ochsenbein, U. Schlegel, B. Neyns, D. Krex, M. Simon, G. Nikkhah, M. Picard, R. Stupp, W. Wick, M. Weller, Cilengitide treatment of newly diagnosed glioblastoma patients does not alter patterns of progression. J. Neurooncol. 117, 141–145 (2014)

    Article  CAS  PubMed  Google Scholar 

  57. K. Färber, M. Synowitz, G. Zahn, D. Vossmeyer, R. Stragies, N. van Rooijen, H. Kettenmann, An alpha5beta1 integrin inhibitor attenuates glioma growth. Mol. Cell. Neurosci. 39, 579–585 (2008)

    Article  PubMed  Google Scholar 

  58. W. Wang, F. Wang, F. Lu, S. Xu, W. Hu, J. Huang, Q. Gu, X. Sun, The antiangiogenic effects of integrin alpha5beta1 inhibitor (ATN-161) in vitro and in vivo. Invest. Ophthalmol. Vis. Sci. 52, 7213–7220 (2011)

    Article  CAS  PubMed  Google Scholar 

  59. D.D. Schlaepfer, S.K. Mitra, D. Ilic, Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim. Biophys. Acta 1692, 77–102 (2004)

    Article  CAS  PubMed  Google Scholar 

  60. D.D. Schlaepfer, S.K. Mitra, Multiple connections link FAK to cell motility and invasion. Curr. Opin. Genet. Dev. 14, 92–101 (2004)

    Article  CAS  PubMed  Google Scholar 

  61. G.E. Plopper, H.P. McNamee, L.E. Dike, K. Bojanowski, D.E. Ingber, Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell 6, 1349–1365 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. H. Sarin, A.S. Kanevsky, H. Wu, A.A. Sousa, C.M. Wilson, M.A. Aronova, G.L. Griffiths, R.D. Leapman, H.Q. Vo, Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J. Transl. Med. 7, 51 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  63. R.-Y. Bai, V. Staedtke, G.J. Riggins, Molecular targeting of glioblastoma: drug discovery and therapies. Trends Mol. Med. 17, 301–312 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Q.T. Ostrom, H. Gittleman, P. Liao, C. Rouse, Y. Chen, J. Dowling, Y. Wolinsky, C. Kruchko, J. Barnholtz-Sloan, CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology 16(Suppl 4), iv1–iv63 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the Delaware Bioscience Center for Advanced Technology and by the University of Delaware Undergraduate Research Program. H. J. Anderson was supported by the Delaware INBRE program, supported by a grant from the National Institute of General Medical Sciences—NIGMS (P20 GM103446) from the National Institutes of Health, and by the Delaware Governor’s Bioscience Fellowship. The authors thank Dr. Vishnu Mohanan for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deni S. Galileo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Movie 1

(MP4 4058 kb)

Supplemental Movie 2

(MP4 2451 kb)

ESM 1

(PDF 1529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, H.J., Galileo, D.S. Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation. Cell Oncol. 39, 229–242 (2016). https://doi.org/10.1007/s13402-016-0267-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0267-7

Keywords

Navigation