Skip to main content
Log in

Application of emerging technologies for extraction of pigments using green solvents: case of deep eutectic solvents combined with ultrasound-assisted extraction technique

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Pigments/colorants including betalains, anthocyanins, carotenoids, and curcuminoids are widely used in food, pharmaceutical, and cosmetic sectors. The increasing interest in natural pigments is related to their biological properties and safety. Deep eutectic solvents (DES) emerged as sustainable and promising solvents for the extraction of bioactive compounds. The application of ultrasound-assisted extraction (UAE) presents many advantages for the recovery of pigments compared to conventional extraction techniques. This review examines the emerged combination of DES and UAE (DES-UAE) as performant recovery systems of pigments. The factors affecting the DES-UAE system, efficiency of DES-UAE for the recovery pigments such as anthocyanins, betalains, carotenoids, and curcuminoids, as well as their stability and bioavailability were discussed. It resulted that the DESs, combined with ultrasound-assisted extraction (DES-UAE) as an extraction system of pigments, showed higher performance compared to the conventional methods such as maceration, percolation, stirring-assisted extraction, and soxhlet extraction. Factors such as DES composition, solvent-to-sample ratio, extraction duration, temperature, pH, ultrasound frequency, and power greatly influence the performance of DES-UAE. The optimum temperature, time, pH, ultrasound frequency, and power for the maximum recovery of the pigments are 20–90 °C, 5–70 min, pH 1–3, 18–80 kHz, and 60–750 W, respectively. Moreover, the pigment-rich extracts obtained with DES-UAE showed strong thermal stability and high bioavailability of pigments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used can be accessed if a demand is formulated

References

  1. Ahouangninou C, Hounmalon GA, Zandjanakou-Tachin M, Mensah A, Osse R, Tanmakpi J, Ntehoué D, Lougbégnon T, Kestemont MP, Edorh P, Clédjo P (2022) Effect of compost and association (Solanum + Amaranth) on pests and productivity of Solanum macrocarpon. Int J Agri Biosci 11(4):251–255

    Google Scholar 

  2. Tahir Z, Khan MI, Ashraf U, Adan IR, Mubarik U (2023) Industrial application of orange peel waste; a review. Int J Agri Biosci 12(2):71–76

    Google Scholar 

  3. Shalaby MA, Ghandour RA, Emam SR (2022) Coadministration of ginger roots extract and vitamin E improves male fertility of streptozotocin-induced diabetic rats. International J Veter Sci 11(2):183–188

    Article  Google Scholar 

  4. Mohamed MA, Hassan HMA (2023) Phytogenic substances as safe growth promoters in poultry nutrition. Int J Veter Sci 12(1):89–100

    Google Scholar 

  5. Li M, Zhu K-X, Guo X-N, Brijs K, Zhou H-M (2014) Natural additives in wheatbased pasta and noodle products: opportunities for enhanced nutritional and functional properties. Compr Rev Food Sci Food Saf 13(4):347–357

    Article  Google Scholar 

  6. Mahesh SK, Fathima J, Veena VG (2019) Cosmetic potential of natural products: industrial applications. In: Swamy M, Akhtar M (eds) Natural bio-active compounds. Springer, Singapore, pp 215–250. https://doi.org/10.1007/978-981-13-7205-6_10

  7. Nabi BG, Mukhtar K, Ansar S, Hassan SA, Hafeez MA, Bhat ZF, Khaneghah AM, Haq AU, Aadil RM (2024) Application of ultrasound technology for the effective management of waste from fruit and vegetable. Ultrason Sonochem 102:106744. https://doi.org/10.1016/j.ultsonch.2023.106744

    Article  Google Scholar 

  8. Fauzi NA, Tan NF, Razak AH, Mansur SA (2020) Qualitative phytochemical analysis and antibacterial potential of Chromolena odorata leaves as affected by soxhlet and maceration extraction. J Adv Ind Technol Appl 1(2):38–48

    Google Scholar 

  9. Palmieri S, Pellegrini M, Ricci A, Compagnone D, Lo Sterzo C (2020) Chemical composition and antioxidant activity of thyme, hemp and coriander extracts: a comparison study of maceration, Soxhlet. UAE and RSLDE techniques Foods 9(9):1221

    Google Scholar 

  10. Alsaud N, Shahbaz K, Farid M (2021) Application of deep eutectic solvents in the extraction of polyphenolic antioxidants from New Zealand Manuka leaves (Leptospermum Scoparium): optimization and antioxidant activity. J Mol Liq 337:116385. https://doi.org/10.1016/j.molliq.2021.116385

    Article  Google Scholar 

  11. Faiznur MF, Masrina MN, Azlina HK (2021) Hydrophilic natural deep eutectic solvent : a review on physicochemical properties and extractability of bioactive compounds. J Mol Liq 339:116923

    Article  Google Scholar 

  12. Ivanovic M, Alanon ´ ME, Arraez-Rom´ AD, Segura-Carretero A (2018) Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Res Int. 111: 67–76. https://doi.org/10.1016/j.foodres.2018.05.014

  13. Cunha SC, Fernandes JO (2018) Extraction techniques with deep eutectic solvents. TrAC Trends Anal Chem 105:225–239

    Article  Google Scholar 

  14. Xiao-Qiang C, Li Z-H, Ling-Ling L, Huan W, Shi-Han Y, Jin-Shan Z, Ying Z (2021) Green extraction using deep eutectic solvents and antioxidant activities of flavonoids from two fruits of Rubia species. LWT Food Sci Technol 148:111708

    Article  Google Scholar 

  15. Dai Y, Jin R, Verpoorte R, Lam W, Cheng YC, Xiao Y, Xu J, Zhang L, Qin X-M, Chen S (2020) Natural deep eutectic characteristics of honey improve the bioactivity and safety of traditional medicines. J Ethnopharmacol 250:112460. https://doi.org/10.1016/j.jep.2019.112460

    Article  Google Scholar 

  16. Yin X, Zhong Z, Bian G, Cheng X, Li D (2020) Ultra-rapid, enhanced and ecofriendly extraction of four main flavonoids from the seeds of Oroxylum indicum by deep eutectic solvents combined with tissue-smashing extraction. Food Chem 319:126555. https://doi.org/10.1016/j.foodchem.2020.126555

    Article  Google Scholar 

  17. Hou M, Hu W, Wang A, Xiu Z, Shi Y, Hao K, Sun X, Cao D, Lu R (2019) Ultrasound-assisted extraction of total flavonoids from Pteris cretica L: process optimization, HPLC analysis, and evaluation of antioxidant activity. Antioxidants 8(10):425. https://doi.org/10.3390/antiox8100425

    Article  Google Scholar 

  18. Morales-de la Pena M, Martín-Belloso O, Welti-Chanes J (2018) High-power ultrasound as pre-treatment in different stages of soymilk manufacturing process to increase the isoflavone content. Ultrason Sonochem 49:154–160. https://doi.org/10.1016/j.ultsonch.2018.07.044

    Article  Google Scholar 

  19. Ekezie FG, Sun DW, Cheng JH (2017) Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: a review of latest developments. Trends Food Sci Technol 67:160–172

    Article  Google Scholar 

  20. Li J, Chen W, Niu D, Wang R, Xu FY, Chen BR, Lin JW, Tang ZS, Zeng XA (2022) Efficient and green strategy based on pulsed electric field coupled with deep eutectic solvents for recovering flavonoids and preparing flavonoid aglycones from noni-processing wastes. J Clean Prod 368:133019

    Article  Google Scholar 

  21. Ali MC, Chen J, Zhang H, Li Z, Zhao L, Qiu H (2019) Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 203:16–22. https://doi.org/10.1016/j.talanta.2019.05.012

    Article  Google Scholar 

  22. Mansur AR, Song NE, Jang HW, Lim TG, Yoo M, Nam TG (2019) Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chem 293:438–445. https://doi.org/10.1016/j.foodchem.2019.05.003

    Article  Google Scholar 

  23. Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 38(6):1053–1064

    Article  Google Scholar 

  24. Takla SS, Shawky E, Hammoda HM, Darwish FA (2018) Green techniques in comparison to conventional ones in the extraction of Amaryllidaceae alkaloids: best solvents selection and parameters optimization. J Chromatogr A 1567:99–110

    Article  Google Scholar 

  25. Cao J, Chen L, Li M, Cao F, Zhao L, Su E (2018) Efficient extraction of proanthocyanidin from Ginkgo biloba leaves employing rationally designed deep eutectic solvent-water mixture and evaluation of the antioxidant activity. J Pharm Biomed Anal 158:317–326

    Article  Google Scholar 

  26. Tang W, Dai Y, Row KH (2018) Evaluation of fatty acid/alcohol-based hydrophobic deep eutectic solvents as media for extracting antibiotics from environmental water. Anal Bioanal Chem 410(28):7325–7336

    Article  Google Scholar 

  27. Huang Y, Feng F, Jiang J, Qiao Y, Wu T, Voglmeir J, Chen Z-G (2017) Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem 221:1400–1405

    Article  Google Scholar 

  28. Wang T, Jiao J, Gai QY, Wang P, Guo N, Niu LL, Fu YJ (2017) Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents. J Pharm Biomed Anal 145:339–345

    Article  Google Scholar 

  29. Zannou O, Koca I, Aldawoud TMS, Galanakis CM (2020) Recovery and stabilization of anthocyanins and phenolic antioxidants of roselle (Hibiscus sabdariffa L) with hydrophilic deep eutectic solvents. Molecules 25(16):3715. https://doi.org/10.3390/molecules25163715

    Article  Google Scholar 

  30. Zannou O, Koca I (2022) Greener extraction of anthocyanins and antioxidant activity from blackberry (Rubus spp) using natural deep eutectic solvents. LWT Food Sci Technol 158:113184

    Article  Google Scholar 

  31. Zannou O, Pashazadeh H, Galanakis CM, Alamri AS, Koca I (2022) Carboxylic acid-based deep eutectic solvents combined with innovative extraction techniques for greener extraction of phenolic compounds from sumac (Rhus coriaria L). J Appl Res Med Arom Plants 30:100380

    Google Scholar 

  32. Chanioti S, Tzia C (2018) Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov Food Sci Emerg Technol 48:228–239

    Article  Google Scholar 

  33. Siddiqui SA, Redha AA, Salauddin M, Harahap IA, Rupasinghe HPV (2023) Factors affecting the extraction of (poly)phenols from natural resources using deep eutectic solvents combined with ultrasound-assisted extraction. Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2023.2266846

    Article  Google Scholar 

  34. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p

    Article  Google Scholar 

  35. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147. https://doi.org/10.1021/ja048266j

    Article  Google Scholar 

  36. Pollet P, Davey EA, Ureña-Benavides EE, Eckert CA, Liotta CL (2014) Solvents for Sustainable Chemical Processes. Green Chem 16(3):1034–1055

    Article  Google Scholar 

  37. Hansen BB, Horton A, Chen B, Poe D, Zhang Y, Spittle S, Klein J, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn E, Ragauskas A, Dadmun M, Zawodzinski T, Baker GA, Tuckerman M, Savinell RF, Sangoro JR (2021) Deep eutectic solvents: a review of fundamentals and applications. Chem Rev 121(3):1232–1285

    Article  Google Scholar 

  38. Xu K, Wang Y, Huang Y, Li N, Wen Q (2015) A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Anal Chim Acta 864:9–20

    Article  Google Scholar 

  39. López R, D’Amato R, Trabalza-Marinucci M, Regni L, Proetti P, Maratta A, Cerutti S, Pacheco P (2020) Green and simple extraction of free seleno-amino acids from powdered and lyophilized milk samples with natural deep eutectic solvents. Food Chem 326:126965

    Article  Google Scholar 

  40. Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IW, Witkamp GJ, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156(4):1701–1705

    Article  Google Scholar 

  41. Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68

    Article  Google Scholar 

  42. Dai Y, Witkamp G-J, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal Chem 85(13):6272–6278. https://doi.org/10.1021/ac400432p

    Article  Google Scholar 

  43. da Silva DT, Pauletto R, da Silva CS, Bochi VC, Rodrigues E, Weber J, de Bona da Silva C, Morisso FDP, Barcia MT, Emanuelli T, (2020) Natural deep eutectic solvents as a biocompatible tool for the extraction of blueberry anthocyanins. J Food Comp Anal 89:103470

    Article  Google Scholar 

  44. Perna FM, Vitale P, Capriati V (2020) Deep eutectic solvents and their applications as green solvents. Cur Op Green Sustain Chem 21:27–33

    Google Scholar 

  45. Iqbal J, Shah NS, Sayed M, Khan JA, Muhammad N, Khan ZUH, S-ur R, Naseem M, Howari FM, Nazzal Y, Niazi NK, Hussein A, Polychronopoulou K (2020) Synthesis of nitrogen-doped Ceria nanoparticles in deep eutectic solvent for the degradation of sulfamethaxazole under solar irradiation and additional antibacterial activities. Chem Eng J 394:124869

    Article  Google Scholar 

  46. Barbieri JB, Goltz C, Cavalheiro FB, Toci AT, Igarashi-Mafra L, Mafra MR (2020) Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Ind Crops Prod 144, February 2020, 112049.

  47. Kussainova D, Shah D (2020) Monoethanolamine based DESs for CO2 absorption: insights from molecular dynamics simulations. Sep Purif Technol 231:115931

    Article  Google Scholar 

  48. Pena-Pereira F, Namieśnik J (2014) Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. Chem Sus Chem 7(7):1784–1800

    Article  Google Scholar 

  49. Shi Y, Xiong D, Zhao Y, Li T, Zhang K, Fan J (2020) Highly efficient extraction/separation of Cr (VI) by a new family of hydrophobic deep eutectic solvents. Chemosphere 241:125082

    Article  Google Scholar 

  50. Chen Z, Ragauskas A, Wan C (2020) Lignin extraction and upgrading using deep eutectic solvents. Ind Crops Prod 147:112241

    Article  Google Scholar 

  51. Hong S, Shen X-J, Xue Z, Sun Z, Yuan T-Q (2020) Structure–function relationships of deep eutectic solvents for lignin extraction and chemical transformation. Green Chem 22:7219–7232

    Article  Google Scholar 

  52. Di Pietro ME, Dugoni GC, Ferro M, Mannu A, Castiglione F, Gomes MC, Fourmentin S, Mele A (2019) Do cyclodextrins encapsulate volatiles in deep eutectic systems? ACS Sus Chem Eng 7(20):17397–17405

    Article  Google Scholar 

  53. Dugoni GC, Di Pietro ME, Castiglione F, Ruellan S, Moufawad T, Moura L, Gomes MC, Fourmentin S, Mele A (2019) Effect of water on deep eutectic solvent/β-cyclodextrin systems. ACS Sus Chem Eng 7(7):7277–7285

    Article  Google Scholar 

  54. El Maaiden E, El Kahia H, Nasser B, Moustaid K, Qarah N, Boukcim H, Hirich A, Kouisni L, El Kharrassi Y (2023) Deep eutectic solventultrasound assisted extraction as a green approach for enhanced extraction of naringenin from Searsia tripartita and retained their bioactivities. Front Nutr 10:1193509

    Article  Google Scholar 

  55. Guo Z, Zhang Q, You T, Zhang X, Xu F, Wu Y (2019) Short-time deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin valorization. Green Chem 21:3099–3108

    Article  Google Scholar 

  56. Milani G, Vian M, Cavalluzzi MM, Franchini C, Corbo F, Lentini G, Chema F (2020) Ultrasound and deep eutectic solvents: an efficient combination to tune the mechanism of steviol glycosides extraction. Ultrason Sonochemi 69:105255

    Article  Google Scholar 

  57. Xia G-H, Li X-H, Jiang Y-h (2021) Deep eutectic solvents as green media for flavonoids extraction from the rhizomes of Polygonatum odoratum. Alexandria Eng J 60(2):1991–2000

    Article  Google Scholar 

  58. Chandra Roy V, Lee HTC, H-J, Park J-S, Nam SY, Lee H, Getachew AT, Chun B-S (2021) Extraction of astaxanthin using ultrasound-assisted natural deep eutectic solvents from shrimp wastes and its application in bioactive films. J clean prod 284:125417

    Article  Google Scholar 

  59. Mehariya S, Fratini F, Lavecchia R, Zuorro A (2021) Green extraction of value-added compounds form microalgae: a short review on natural deep eutectic solvents (NaDES) and related pre-treatments. J Environ Chem Eng. 9(5)105989

  60. Zhang H, Tang B, Row KH (2014) A green deep eutectic solvent-based ultrasound-assisted method to extract astaxanthin from shrimp byproducts. Anal Let 47(5):742–749

    Article  Google Scholar 

  61. Bu F, Zhao Y, Li B, Zhang X, Li J (2023) The effect of choline chloride-butanediol based deep eutectic solvents on ultrasound-assisted extraction, antioxidant activity and stability of anthocyanins extracted from Perilla frutescens (L) Britt. Sus Chem Pharm 32:101000

    Google Scholar 

  62. Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier AS, Abert-Vian M (2017) Review of green food processing techniques. Preservation, transformation, and extraction. Innov Food Sci Emerg Technol 41:357–377

    Article  Google Scholar 

  63. Fan Y, Cao X, Zhang M, Wei S, Zhu Y, Ouyang H, He J (2022) Quantitative comparison and chemical profile analysis of different medicinal parts of Perilla frutescens (L) Britt from different varieties and harvest periods. J Agricult Food Chem 70(28):8838–8853

    Article  Google Scholar 

  64. Thakur R, Gupta V, Dhar P, Deka SC, Das AB (2021) Ultrasound-assisted extraction of anthocyanin from black rice bran using natural deep eutectic solvents: optimization, diffusivity, and stability. J Food Process Preserv 46(3):e16309

    Google Scholar 

  65. Bi Y, Chi X, Zhang R, Lu Y, Wang Z, Dong Q, Ding C, Yang R, Jiang L (2020) Highly efficient extraction of mulberry anthocyanins in deep eutectic solvents: Insights of degradation kinetics and stability evaluation. Innovative Food Sci Emerg Technol 66:102512

    Article  Google Scholar 

  66. Fu X, Wang D, Belwal T, Xie J, Xu Y, Li L, Zou L, Zhang L, Luo Z (2021) Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. LWT Food Sci Technol 144:111220

    Article  Google Scholar 

  67. Viñas-Ospino A, Panić M, Radojčić-Redovniković I, Blesa J, Esteve MJ (2023) Using novel hydrophobic deep eutectic solvents to improve a sustainable carotenoid extraction from orange peels. Food Biosci 53:102570

    Article  Google Scholar 

  68. Silva YP, Ferreira TA, Jiao G, Brooks MS (2019) Sustainable approach for lycopene extraction from tomato processing by-product using hydrophobic eutectic solvents. J Food Sci Technol 56:1649–1654

    Article  Google Scholar 

  69. Stupar A, Šeregelj V, Ribeiro BD, Pezo L, Cvetanović A, Mišan A, Marrucho I (2021) Recovery of β-carotene from pumpkin using switchable natural deep eutectic solvents. Ultrason Sonochem 1(76):105638

    Article  Google Scholar 

  70. Altunay N, Elik A, Gürkan R (2020) Preparation and application of alcohol based deep eutectic solvents for extraction of curcumin in food samples prior to its spectrophotometric determination. Food chem 25(310):125933

    Article  Google Scholar 

  71. Rosarina D, Narawangsa DR, Chandra NS, Sari E, Hermansyah H (2022) Optimization of ultrasonic-assisted extraction (UAE) method using natural deep eutectic solvent (NADES) to increase curcuminoid yield from Curcuma longa L, Curcuma xanthorrhiza, and Curcuma mangga Val. Molecules 27(18):6080

    Article  Google Scholar 

  72. Patil SS, Pathak A, Rathod VK (2021) Optimization and kinetic study of ultrasound assisted deep eutectic solvent based extraction: a greener route for extraction of curcuminoids from Curcuma longa. Ultrason Sonochem 70:105267

    Article  Google Scholar 

  73. Hernández-Aguirre OA, Muro C, Hernández-Acosta E, Alvarado Y, Díaz-Nava MD (2021) Extraction and stabilization of betalains from beetroot (Beta vulgaris) wastes using deep eutectic solvents. Molecules 26(21):6342

    Article  Google Scholar 

  74. Demuner A, Dias A, Blank D, Cerceau C, Sousa R, Reis C, Santos M, Stringheta P (2023) Ultrasound-assisted extraction of active compounds from Beta vulgaris using deep eutectic solvents. Food Sci Technol 43:e107022

    Article  Google Scholar 

  75. Cui J, Fang D, Tian X, Peng J, Chen D, Xu S, Ma L (2023) Sustainable conversion of cottonseed hulls to valuable proanthocyanidins through ultrasound-assisted deep eutectic solvent extraction. Ultrason Sonochem 100:106605

    Article  Google Scholar 

  76. Qin G, Zhang F, Ren M, Chen X, Liu C, Li G, Gao Q, Qiao L, Jiang Y, Zhu L, Guo Y (2023) Eco-friendly and efficient extraction of polyphenols from Ligustrum robustum by deep eutectic solvent assisted ultrasound. Food Chem 429:136828

    Article  Google Scholar 

  77. Ozbek Yazici S, Ozmen İ (2022) Ultrasound assisted extraction of phenolic compounds from Capparis Ovata var canescens fruit using deep eutectic solvents. J Food Process Preserv 46(2):e16286

    Article  Google Scholar 

  78. Chou PH, Matsui S, Misaki K, Matsuda T (2007) Isolation and identification of xenobiotic aryl hydrocarbon receptor ligands in dyeing wastewater. Environ Sci Technol 41(2):652–657

    Article  Google Scholar 

  79. Pazmiño-Durán AE, Giusti MM, Wrolstad RE, Glória BA (2001) Anthocyanins from oxalis triangularis as potential food colorants. Food Chem 75(2):211–216

    Article  Google Scholar 

  80. Konczak I, Zhang W (2004) Anthocyanins-more than nature’s colours. J Biomed Biotechnol 5:239–240

    Article  Google Scholar 

  81. Dai Y, Rozema E, Verpoorte R, Choi YH (2016) Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. J Chromatogr A 1434:50–56

    Article  Google Scholar 

  82. Xue H, Tan J, Li Q, Tang J, Cai X (2020) Optimization ultrasound-assisted deep eutectic solvent extraction of anthocyanins from raspberry using response surface methodology coupled with genetic algorithm. Foods 9(10):1409

    Article  Google Scholar 

  83. Radošević K, Ćurko N, Srček VG, Bubalo MC, Tomašević M, Ganić KK, Redovniković IR (2016) Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity. LWT- Food Sci Technol 73:45–51

    Article  Google Scholar 

  84. Bosiljkov T, Dujmić F, Bubalo MC, Hribar J, Vidrih R, Brnčić M, Zlatic E, Redovniković IR, Jokić S (2017) Natural deep eutectic solvents and ultrasound-assisted extraction: green approaches for extraction of wine lees anthocyanins. Food Bioprod Process 102:195–203

    Article  Google Scholar 

  85. Velásquez P, Bustos D, Montenegro G, Giordano A (2021) Ultrasound-assisted extraction of anthocyanins using natural deep eutectic solvents and their incorporation in edible films. Molecules 26(4):984

    Article  Google Scholar 

  86. Zannou O, Pashazadeh H, Ghellam M, Ibrahim SA, Koca I (2022) Extraction of anthocyanins from Borage (Echium amoenum) flowers using choline chloride and a glycerol-based, deep eutectic solvent: optimization, antioxidant activity, and in vitro bioavailability. Molecules 27(1):134

    Article  Google Scholar 

  87. Shekaari H, Zafarani-Moattar MT, Mokhtarpour M (2022) Effective ultrasonic-assisted extraction and solubilization of curcuminoids from turmeric by using natural deep eutectic solvents and imidazolium-based ionic liquids. J Mol Liq 360:119351

    Article  Google Scholar 

  88. Koutsoukos S, Tsiaka T, Tzani A, Zoumpoulakis P, Detsi A (2019) Choline chloride and tartaric acid, a natural deep eutectic solvent for the efficient extraction of phenolic and carotenoid compounds. J Clean Prod 241:118384

    Article  Google Scholar 

  89. Zou DM, Brewer M, Garcia F, Feugang JM, Wang J, Zang R, Liu H, Zou C (2005) Cactus pear: a natural product in cancer chemoprevention. Nutr J 4:1–2

    Article  Google Scholar 

  90. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochem 62:247–269

    Article  Google Scholar 

  91. Khan MI, Giridhar P (2015) Plant betalains: chemistry and biochemistry. Phytochem 117:267–295

    Article  Google Scholar 

  92. Stintzing FC, Trichterborn J, Carle R (2006) Characterisation of anthocyanin–betalain mixtures for food colouring by chromatic and HPLC-DAD-MS analyses. Food Chem 94(2):296–309

    Article  Google Scholar 

  93. Madadi E, Mazloum-Ravasan S, Yu JS, Ha JW, Hamishehkar H, Kim KH (2020) Therapeutic application of betalains: a review. Plants 9(9):1219

    Article  Google Scholar 

  94. Melgar B, Dias MI, Barros L, Ferreira IC, Rodriguez-Lopez AD, Garcia-Castello EM (2019) Ultrasound and microwave assisted extraction of Opuntia fruit peels biocompounds: optimization and comparison using RSM-CCD. Molecules 24(19):3618

    Article  Google Scholar 

  95. Nunes AN, Do Carmo CS, Duarte CM (2015) Production of a natural red pigment derived from Opuntia spp. using a novel high pressure CO 2 assisted-process. RSC adv 5(101):83106–14.

  96. Tien NN, Le NL, Khoi TT, Richel A (2022) Characterisation of dragon fruit peel pectin extracted with natural deep eutectic solvent and sequential microwave-ultrasound-assisted approach. Int J Food Sci Technol 57(6):3735–3749

    Article  Google Scholar 

  97. Shen Y, Hu Y, Huang K, Yin S, Chen B, Yao S (2009) Solid-phase extraction of carotenoids. J Chromatogr A 1216:5763–5768

    Article  Google Scholar 

  98. Amorim-Carrilho KT, Cepeda A, Fente C, Regal P (2014) Review of methods for analysis of carotenoids. TrAC Trend Anal Chem 56:49–73

    Article  Google Scholar 

  99. Tanaka T, Shnimizu M, Moriwaki H (2012) Cancer chemoprevention by carotenoids. Molecules 17:3202–3242

    Article  Google Scholar 

  100. Agarwal M, Parameswari RP, Vasanthi HR, Das DK (2012) Dynamic action of carotenoids in cardioprotection and maintenance of cardiac health. Molecules 17:4755–4769

    Article  Google Scholar 

  101. Lazzarini C, Casadei E, Valli E, Tura M, Ragni L, Bendini A, Gallina Toschi T (2022) Sustainable drying and green deep eutectic extraction of carotenoids from tomato pomace. Foods 11(3):405

    Article  Google Scholar 

  102. Jayaprakasha GK, Rao LJM, Sakariah KK (2002) Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem 50:3668–3672

    Article  Google Scholar 

  103. Li S, Yuan W, Deng G, Wang P, Yang P, Aggarwal B (2011) Chemical composition and product quality control of turmeric chemical composition and product quality control of turmeric (Curcuma longa L.). Pharm Crop 2:28–54

    Article  Google Scholar 

  104. Mandal V, Dewanjee S, Sahu R, Mandal SC (2009) Design and optimization of ultrasound assisted extraction of curcumin as an effective alternative for conventional solid liquid extraction of natural products. Nat Prod Commun 4:95–100

    Google Scholar 

  105. Kongpol K, Sermkaew N, Makkliang F, Khongphan S, Chuaboon L, Sakdamas A, Sakamoto S, Putalun W, Yusakul G (2022) Extraction of curcuminoids and ar-turmerone from turmeric (Curcuma longa L) using hydrophobic deep eutectic solvents (HDESs) and application as HDES-based microemulsions. Food Chem 396:133728

    Article  Google Scholar 

  106. Grillo G, Calcio Gaudino E, Rosa R, Leonelli C, Timonina A, Grygiškis S, Tabasso S, Cravotto G (2021) Green deep eutectic solvents for microwave-assisted biomass delignification and valorisation. Molecules 26(4):798

    Article  Google Scholar 

  107. Dai Y, Verpoorte R, Choi YH (2014) Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem 159:116–121

    Article  Google Scholar 

  108. Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P (2021) Polyphenols and human health: the role of bioavailability. Nutr 13(1):273

    Google Scholar 

  109. Huang Y, Yang J, Zhao Y, Yu L, He Y, Wan H, Li C (2021) Screening, optimization, and bioavailability research of natural deep eutectic solvent extracts from radix pueraria. Molecules 26(3):729

    Article  Google Scholar 

  110. da Silva DT, Smaniotto FA, Costa IF, Baranzelli J, Muller A, Somacal S, Monteiro CS, Vizzotto M, Rodrigues E, Barcia MT, Emanuelli T (2021) Natural deep eutectic solvent (NADES): a strategy to improve the bioavailability of blueberry phenolic compounds in a ready-to-use extract. Food Chem 364:130370

    Article  Google Scholar 

  111. Abouheif SA, Sallam SM, El Sohafy SM, Kassem FF, Shawky E (2022) A green extraction approach using natural deep eutectic solvents enhances the in-vivo bioavailability of curcuminoids from turmeric extracts. Ind Crop Prod 189:115790

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out with the aid of a grant in the UNESCO-TWAS programme, “Seed Grant for African Principal Investigators” financed by the German Ministry of Education and Research, (BMBF).

Funding

UNESCO-TWAS/grant no. FR3240330977.

Author information

Authors and Affiliations

Authors

Contributions

Oscar Zannou: conceptualization, data curation, methodology, visualization, and writing—original draft, Kouame F. Oussou: conceptualization, data curation, methodology, visualization, and writing—original draft. Sarhan Mohammed: data curation, methodology, visualization, and writing—original draft. Ifagbémi Bienvenue Chabi: data curation, methodology, visualization, and writing—review and editing. Yénoukounmè E. Kpoclou: data curation, methodology, visualization, and writing—review and editing. Belkis Tekgüler: data curation, methodology, visualization, and writing—review and editing. D. Sylvain Dabadé: data curation, methodology, visualization, and writing—review and editing. Ilkay Koca: data curation, methodology, visualization, and writing—review and editing. Tuba Esatbeyoglu: data curation, methodology, visualization, and writing—review and editing.

Corresponding author

Correspondence to Oscar Zannou.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zannou, O., Oussou, K.F., Mohammed, S. et al. Application of emerging technologies for extraction of pigments using green solvents: case of deep eutectic solvents combined with ultrasound-assisted extraction technique. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05674-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05674-3

Keywords

Navigation