Skip to main content
Log in

Thermoplastic composites reinforced chemically modified kenaf fibre: current progress on mechanical and dynamic mechanical properties

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Many researchers are searching for viable substitutes for the highly polluting synthetic plastics/fibres, driven by the depletion of petroleum crude and the environmental risks posed by petroleum-based polymers. Hence, there is a mounting interest in the utilization of natural materials especially the reinforcement materials. This is because the use of lignocellulose derived from natural fibres is seen to be intriguing. Natural fibres have been found to have both economic and ecological advantages over their synthetic counterparts. In this aspect, several natural fibres have been used as substitutes for the synthetic based fibres in thermoplastic composites. This review focuses on the utilization kenaf fibre as a reinforcement material in thermoplastic based composite materials. Emphasis is given on the fibre structure, properties, chemical modification, and mechanical and dynamic mechanical properties. Kenaf fibre-based thermoplastics composites have emerged as a potential substitute for various synthetic fibre-based thermoset composites, thereby contributing to the development of environmentally friendly composite materials. This review further deals with the optimization of its mechanical and dynamic features which is crucial for various applications. This review also presents a comprehensive evaluation of the current state-of-the-art characterizations on the mechanical and dynamic mechanical performance of these composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from ref. [104]. Copyright 2012 Taylors and Francis

Fig. 3

Reproduced with permission from ref. [105]. Copyright 2012 Elsevier

Fig. 4

Reproduced from ref. [108]. Creative Common CC BY license

Fig. 5

Reproduced from ref. [108]. Creative Common CC BY license

Fig. 6

Reproduced with permission from ref. [48]. Copyright 2019 Elsevier

Similar content being viewed by others

Data availability

All data and materials are available within this research article.

References

  1. Razman MR, Hadi AH, Jahi JM et al (2011) Transformation for better living environment in urban region: application of the principle of transboundary liability and the montreal protocol experiences. Akademika 81:93–102

  2. Ali SSS, Razman MR, Awang A (2020) The nexus of population, GDP growth, electricity generation, electricity consumption and carbon emissions output in Malaysia. Int J Energy Econ Policy 10:84–89. https://doi.org/10.32479/ijeep.8987

    Article  Google Scholar 

  3. Golar M, Malik A et al (2019) The adaptive-collaborative as a strategy comunications for conflict resolution on the national park. Ecol Environ Conserv 25:352–359

    Google Scholar 

  4. Zainuddin S, Mascunra Amir A, Kibi YR et al (2019) Social engineering model of natural resources management of Palu City. J Eng Appl Sci 14:275–279. https://doi.org/10.36478/jeasci.2019.275.279

    Article  Google Scholar 

  5. Farid MAA, Lease J, Andou Y (2023) Mechanochemical reactions in lignocellulosic materials: a review. J Nat Fibre Polym Compos 2:1–14

    Google Scholar 

  6. Asyraf MRM, Ishak MR, Sapuan SM, Yidris N (2021) Influence of additional bracing arms as reinforcement members in wooden timber cross-arms on their long-term creep responses and properties. Appl Sci 11:2061. https://doi.org/10.3390/app11052061

    Article  Google Scholar 

  7. Al ESSO, Hua LS, Ashaari Z, Halip JA (2022) Effects of dip-treatment in palm oil on dimensional stability of particleboard made from rubberwood and oil palm trunk. J Nat Fibre Polym Compos 1:1

    Google Scholar 

  8. Harussani MM, Sapuan SM (2022) Tensile and flexural properties of compression molded composites of epoxy reinforced with treated sugar palm fibre. J Nat Fibre Polym Compos 1:1

    Google Scholar 

  9. Asyraf MRM, Ishak MR, Syamsir A et al (2023) Filament-wound glass-fibre reinforced polymer composites: potential applications for cross arm structure in transmission towers. Polym Bull 80:1059–1084. https://doi.org/10.1007/s00289-022-04114-4

    Article  Google Scholar 

  10. Ilyas RA, Sapuan SM, Atiqah A et al (2020) Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: water barrier properties. Polym Compos 41:459–467. https://doi.org/10.1002/pc.25379

  11. Jaafar CNA, Rizal MAM, Zainol I (2018) Effect of kenaf alkalization treatment on morphological and mechanical properties of epoxy / silica / kenaf composite. Int J Eng Technol 7:258–263. https://doi.org/10.14419/ijet.v7i4.35.22743

    Article  Google Scholar 

  12. Rajawat AS, Singh S, Gangil B et al (2022) Effect of marble dust on the mechanical, morphological, and wear performance of basalt fibre-reinforced epoxy composites for structural applications. Polymers 14:1325. https://doi.org/10.3390/polym14071325

    Article  Google Scholar 

  13. Harussani MM, Gwyth M, Tarique J (2022) An overview of mechanical performance of arrowroot starchbased biopolymer composites. J Nat Fibre Polym Compos 2:1

    Google Scholar 

  14. Asyraf MRM, Ishak MR, Razman MR, Chandrasekar M (2019) Fundamentals of creep, testing methods and development of test rig for the full-scale crossarm: a review. J Teknol 81:155–164. https://doi.org/10.11113/jt.v81.13402

  15. Saba N, Paridah MT, Jawaid M et al (2015) Potential utilization of kenaf biomass in different applications. In: Hakeem KR, Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer, Switzerland, pp 1–34

  16. Zainudin MZ, Mansor MR, Ali MB et al (2023) Effect of varying fibre loadings on the impact performance of kenaf and coir reinforced bioepoxy composites. J Nat Fibre Polym Compos 2:1–8

    Google Scholar 

  17. Fitri MFM, Asyraf MRM, Hassan SA, Ilyas RA (2024) Unveiling the physico‐mechanical properties of kenaf yarn fiber‐reinforced acrylonitrile butadiene styrene composites: effect of quasi‐isotropic lay‐up sequences. Polym Compos 1–14. (In-Press) https://doi.org/10.1002/pc.28414

  18. Rashdi AAA, Sapuan SM, Ahmad MMHM, Khalina A (2009) Water absorption and tensile properties of soil buried kenaf fibre reinforced unsaturated polyester composites (KFRUPC). J Food Agric Environ 7:908–911

    Google Scholar 

  19. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364. https://doi.org/10.1016/j.carbpol.2007.05.040

    Article  Google Scholar 

  20. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37:5139–5149. https://doi.org/10.1016/0032-3861(96)00144-9

    Article  Google Scholar 

  21. Manral A, Bajpai PK, Khanna P (2023) Effect of non-acidic chemical treatment of kenaf fiber on biodegradation and thermal degradation of kenaf/PLA green composite laminates. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-05010-1

    Article  Google Scholar 

  22. Serizawa S, Inoue K, Iji M (2006) Kenaf-fiber-reinforced poly(lactic acid) used for electronic products. J Appl Polym Sci 100:618–624. https://doi.org/10.1002/app.23377

    Article  Google Scholar 

  23. Bajuri F, Mazlan N, Ishak MR, Imatomi J (2016) Flexural and compressive properties of hybrid kenaf/silica nanoparticles in epoxy composite. Procedia Chem 19:955–960. https://doi.org/10.1016/j.proche.2016.03.141

    Article  Google Scholar 

  24. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4

    Article  Google Scholar 

  25. Ng LF, Yahya MY, Leong HY et al (2023) Evaluation of physical and mechanical properties of pineapple leaf and kenaf fabrics as potential reinforcement in bio-composites. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-04525-x

    Article  Google Scholar 

  26. Tamta N, Palsule S (2023) Kenaf fiber reinforced chemically functionalized styrene-acrylonitrile composites. J Thermoplast Compos Mater 37:5–27. https://doi.org/10.1177/08927057231168560

  27. Kumar S, Dang R, Manna A et al (2023) Effect of chemically treated kenaf fiber on the mechanical, morphological, and microstructural characteristics of PLA-based sustainable bio-composites fabricated via direct injection molding route. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-04916-0

    Article  Google Scholar 

  28. Dev B, Rahman A, Alam R et al (2023) Mapping the progress in natural fiber reinforced composites: preparation, mechanical properties, and applications. Polym Compos 44:3748–3788. https://doi.org/10.1002/pc.27376

    Article  Google Scholar 

  29. Dev B, Rahman MA, Repon MR et al (2023) Recent progress in thermal and acoustic properties of natural fiber reinforced polymer composites: preparation, characterization, and data analysis. Polym Compos 44:7235–7297. https://doi.org/10.1002/pc.27633

    Article  Google Scholar 

  30. Han SNMF, Taha MM, Mansor MR, Rahman MAA (2022) Investigation of tensile and flexural properties of kenaf fiber-reinforced acrylonitrile butadiene styrene composites fabricated by fused deposition modeling. J Eng Appl Sci 69:1–18. https://doi.org/10.1186/s44147-022-00109-0

    Article  Google Scholar 

  31. Mohammadsalih ZG, Muawwidzah M, Siddiqui VU, Sapuan SM (2023) Mechanical properties of wood fibre filled polylactic acid (PLA) composites using additive manufacturing techniques. J Nat Fibre Polym Compos 2:1–10

    Google Scholar 

  32. Davoodi MM, Sapuan SM, Ahmad D et al (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31:4927–4932. https://doi.org/10.1016/j.matdes.2010.05.021

    Article  Google Scholar 

  33. Azlan KA, Mansor MR, E. Mohamad B (2023) New sustainable conceptual design framework for biocomposite automotive headrests based on concurrent engineering approach. J Nat Fibre Polym Compos 2:1–8

  34. Yiow RV, Mansor MR (2022) Natural fibre selection for sustainable two-stroke marine diesel engine crosshead bearing. J Nat Fibre Polym Compos 1:1

    Google Scholar 

  35. Krishna KV, Kanny K (2016) The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Compos Part B Eng 104:111–117. https://doi.org/10.1016/j.compositesb.2016.08.010

    Article  Google Scholar 

  36. Asyraf MRM, Syamsir A, Bathich H et al (2022) Effect of fibre layering sequences on flexural creep properties of kenaf fibre-reinforced unsaturated polyester composite for structural applications. Fibers Polym 23:3232–3240. https://doi.org/10.1007/s12221-022-4386-7

    Article  Google Scholar 

  37. Nurazzi NM, Shazleen SS, Aisyah HA et al (2021) Effect of silane treatments on mechanical performance of kenaf fibre reinforced polymer composites: a review. Funct Compos Struct 3:045003. https://doi.org/10.1088/2631-6331/ac351b

    Article  Google Scholar 

  38. Asim M, Paridah MT, Saba N et al (2018) Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Compos Struct. https://doi.org/10.1016/j.compstruct.2018.06.068

    Article  Google Scholar 

  39. Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 - polyester resin matrix. Compos Sci Technol 64:1219–1230. https://doi.org/10.1016/j.compscitech.2003.10.001

    Article  Google Scholar 

  40. Zhang Q, Zhang D, Lu W et al (2020) Production of high-density polyethylene biocomposites from rice husk biochar: effects of varying pyrolysis temperature. Sci Total Environ 738. https://doi.org/10.1016/j.scitotenv.2020.139910

  41. D’Antino T, Pisani MA (2019) Long-term behavior of GFRP reinforcing bars. Compos Struct 227. https://doi.org/10.1016/j.compstruct.2019.111283

  42. Li YL, Zhao XL, Singh Raman RK (2018) Mechanical properties of seawater and sea sand concrete-filled FRP tubes in artificial seawater. Constr Build Mater 191:977–993. https://doi.org/10.1016/j.conbuildmat.2018.10.059

    Article  Google Scholar 

  43. Majeed K, Ahmed A, Abu Bakar MS et al (2019) Mechanical and thermal properties of montmorillonite-reinforced polypropylene/rice husk hybrid nanocomposites. Polymers (Basel) 11:1557. https://doi.org/10.3390/polym11101557

  44. Amir AL, Ishak MR, Yidris N et al (2021) Potential of honeycomb-filled composite structure in composite cross-arm component: a review on recent progress and its mechanical properties. Polymers 13:1341. https://doi.org/10.3390/polym13081341

    Article  Google Scholar 

  45. Amir AL, Ishak MR, Yidris N et al (2021) Advances of composite cross arms with incorporation of material core structures: manufacturability, recent progress and views. J Mater Res Technol 13:1115–1131. https://doi.org/10.1016/j.jmrt.2021.05.040

    Article  Google Scholar 

  46. Ayu RS, Khalina A, Harmaen AS et al (2020) Characterization study of empty fruit bunch (EFB) fibers reinforcement in poly(butylene) succinate (PBS)/starch/glycerol composite sheet. Polymers (Basel) 12:1571. https://doi.org/10.3390/polym12071571

    Article  Google Scholar 

  47. Hasan KMF, Horváth PG, Bak M, Alpár T (2021) A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Adv 11:10548–10571

    Article  Google Scholar 

  48. Mazani N, Sapuan SM, Sanyang ML et al (2019) Design and fabrication of a shoe shelf from kenaf fiber reinforced unsaturated polyester composites. In: Ariffin H, Sapuan SM, Hassan MA (eds) Lignocellulose for Future Bioeconomy, 1st edn. Elsevier Inc., Amsterdam, Netherland, pp 315–332

    Chapter  Google Scholar 

  49. Mansor MR, Sapuan SM, Zainudin ES, Nuraini AA (2014) Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ-Morphological Chart-Analytic Hierarchy Process method. Mater Des 54:473–482. https://doi.org/10.1016/j.matdes.2013.08.064

    Article  Google Scholar 

  50. Ramesh P, Prasad BD, Narayana K (2018) Characterization of kenaf fiber and its composites: a review. J Reinf Plast Compos 37:731–737. https://doi.org/10.1177/0731684418760206

    Article  Google Scholar 

  51. Ezekiel Babatunde O, Mohamad Yatim J, Ishak MY et al (2015) Potentials of kenaf fibre in bio-composite production: a review. J Teknol

  52. Amin MHM, Arifin AMT, Hassan MF et al (2017) An Evaluation of mechanical properties on kenaf natural fiber/polyester composite structures as table tennis blade. J Phys Conf Ser 914:012015. https://doi.org/10.1088/1742-6596/914/1/012015

    Article  Google Scholar 

  53. Hao LC, Sapuan SM, Hassan MR, Sheltami RM (2018) Natural fiber reinforced vinyl polymer composites. Elsevier Ltd

  54. Nayeri MD, Paridah MT, Harun J et al (2013) Effects of temperature and time on the morphology, pH, and buffering capacity of bast and core kenaf fibres. BioResources 8:1801–1812. https://doi.org/10.15376/biores.8.2.1801-1812

  55. Abdul Khalil HPS, Yusra AFI, Bhat AH, Jawaid M (2010) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind Crops Prod 31:113–121. https://doi.org/10.1016/j.indcrop.2009.09.008

    Article  Google Scholar 

  56. Ishak MR, Leman Z, Sapuan SM et al (2010) Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites. IOP Conf Ser Mater Sci Eng 11:012006. https://doi.org/10.1088/1757-899x/11/1/012006

    Article  Google Scholar 

  57. Tezara C, Siregar JP, Lim HY et al (2016) Factors that affect the mechanical properties of kenaf fiber reinforced polymer: a review. J Mech Eng Sci 10:2159–2175. https://doi.org/10.15282/jmes.10.2.2016.19.0203

    Article  Google Scholar 

  58. Hamidon MH, Sultan MTH, Ariffin AH, Shah AUM (2019) Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. J Mater Res Technol 8:3327–3337. https://doi.org/10.1016/j.jmrt.2019.04.012

    Article  Google Scholar 

  59. Azeez MA, Orege JI (2018) Bamboo, its chemical modification and products. In: Abdul Khalil HPS (ed) Bamboo - current and future prospects. InTech, London, UK, pp 25–48

  60. Haghdan S, Renneckar S, Smith GD (2016) Sources of lignin. In: Faruk O, Sain M (eds) Lignin in polymer composites, Elsevier, Amsterdam, pp 1–11

  61. Zainudin ES, Yan LH, Haniffah WH et al (2014) Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym Compos 35:1418–1425. https://doi.org/10.1002/pc.22794

    Article  Google Scholar 

  62. Ansell MP, Mwaikambo LY (2009) The structure of cotton and other plant fibres. In: Ansell, MP, Mwaikambo, LY, Eichhorn, SJ et al (eds) Handbook of textile fibre structure. Elsevier, Amsterdam, pp 62–94

  63. Daud Z, Mohd Hatta MZ, Mohd Kassi AS, Mohd Aripi A (2014) Analysis of the chemical compositions and fiber morphology of pineapple (Ananas comosus) leaves in Malaysia. J Appl Sci 14:1355–1358. https://doi.org/10.3923/jas.2014.1355.1358

    Article  Google Scholar 

  64. Barreto ACH, Rosa DS, Fechine PBA, Mazzetto SE (2011) Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos Part A Appl Sci Manuf 42:492–500. https://doi.org/10.1016/j.compositesa.2011.01.008

    Article  Google Scholar 

  65. Norizan MN, Abdan K, Salit MS, Mohamed R (2017) Physical, mechanical and thermal properties of sugar palm yarn fibre loading on reinforced unsaturated polyester composites. J Phys Sci 28:115–136. https://doi.org/10.21315/jps2017.28.3.8

    Article  Google Scholar 

  66. Alias AH, Norizan MN, Sabaruddin FA et al (2021) Hybridization of MMT/lignocellulosic fiber reinforced polymer nanocomposites for structural applications: a review. Coatings 11:1355. https://doi.org/10.3390/coatings11111355

    Article  Google Scholar 

  67. Joseph PV, Joseph K, Thomas S (2002) Short sisal fiber reinforced polypropylene composites: the role of interface modification on ultimate properties. Compos Interfaces 9:171–205. https://doi.org/10.1163/156855402760116094

    Article  Google Scholar 

  68. Sreekala MS, Kumaran MG, Joseph S et al (2000) Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl Compos Mater 7:295–329. https://doi.org/10.1023/A:1026534006291

    Article  Google Scholar 

  69. Sreekala MS, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos Sci Technol 63:861–869. https://doi.org/10.1016/S0266-3538(02)00270-1

    Article  Google Scholar 

  70. Makarona E, Koutzagioti C, Salmas C et al (2017) Enhancing wood resistance to humidity with nanostructured ZnO coatings. Nano-Structures and Nano-Objects 10:57–68. https://doi.org/10.1016/j.nanoso.2017.03.003

    Article  Google Scholar 

  71. Deeraj BDS, R. H, Jayan JS et al (2020) Enhanced visco-elastic and rheological behavior of epoxy composites reinforced with polyimide nanofiber. Nano-Struct Nano-Objects 21:100421. https://doi.org/10.1016/j.nanoso.2019.100421

  72. Yallappa S, Deepthi DR, Yashaswini S et al (2017) Natural biowaste of Groundnut shell derived nano carbons: synthesis, characterization and itsin vitro antibacterial activity. Nano-Struct Nano-Objects 12:84–90. https://doi.org/10.1016/j.nanoso.2017.09.009

    Article  Google Scholar 

  73. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29:187–207. https://doi.org/10.1002/pc.20461

    Article  Google Scholar 

  74. John MJ, Francis B, Varughese KT, Thomas S (2008) Effect of chemical modification on properties of hybrid fiber biocomposites. Compos Part A Appl Sci Manuf 39:352–363. https://doi.org/10.1016/j.compositesa.2007.10.002

    Article  Google Scholar 

  75. Zainuddin N, Ahmad I, Kargarzadeh H, Ramli S (2017) Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr Polym 163:261–269. https://doi.org/10.1016/j.carbpol.2017.01.036

    Article  Google Scholar 

  76. Paul SA, Joseph K, Mathew GDG et al (2010) Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber. Compos Part A Appl Sci Manuf 41:1380–1387. https://doi.org/10.1016/j.compositesa.2010.04.015

    Article  Google Scholar 

  77. Paul SA, Reussmann T, Mennig G et al (2007) The role of interface modification on the mechanical properties of injection-moulded composites from commingled polypropylene/banana granules. Compos Interfaces 14:849–867. https://doi.org/10.1163/156855407782106555

    Article  Google Scholar 

  78. Farahani GN, Ahmad I, Mosadeghzad Z (2012) Effect of Fiber content, fiber length and alkali treatment on properties of kenaf fiber/UPR composites based on recycled PET wastes. Polym Plast Technol Eng 51:634–639. https://doi.org/10.1080/03602559.2012.659314

    Article  Google Scholar 

  79. Pottathara YB, Bobnar V, Finšgar M et al (2018) Cellulose nanofibrils-reduced graphene oxide xerogels and cryogels for dielectric and electrochemical storage applications. Polymer 147:260–270. https://doi.org/10.1016/j.polymer.2018.06.005

    Article  Google Scholar 

  80. Pottathara YB, Thomas S, Kalarikkal N et al (2019) UV-Induced reduction of graphene oxide in cellulose nanofibril composites. New J Chem 43:681–688. https://doi.org/10.1039/C8NJ03563F

    Article  Google Scholar 

  81. Pottathara YB, Bobnar V, Gorgieva S et al (2016) Mechanically strong, flexible and thermally stable graphene oxide/nanocellulosic films with enhanced dielectric properties. RSC Adv 6:49138–49149. https://doi.org/10.1039/c6ra06744a

    Article  Google Scholar 

  82. Liu Y, Lv X, Bao J et al (2019) Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydr Polym 218:179–187. https://doi.org/10.1016/j.carbpol.2019.04.088

    Article  Google Scholar 

  83. Gopakumar DA, Pai AR, Pottathara YB et al (2018) Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band. ACS Appl Mater Interfaces 10:20032–20043. https://doi.org/10.1021/acsami.8b04549

    Article  Google Scholar 

  84. Saba N, Alothman OY, Almutairi Z, Jawaid M (2019) Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: mechanical and thermomechanical properties. Constr Build Mater 201:138–148. https://doi.org/10.1016/j.conbuildmat.2018.12.182

    Article  Google Scholar 

  85. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274. https://doi.org/10.1016/S0079-6700(98)00018-5

    Article  Google Scholar 

  86. Aziz NA (2011) Mechanical performance of kenaf fibre reinforced thermoplastic composite. PhD Thesis, Universiti Malaysia Pahang

  87. Radzuan NAM, Tholibon D, Sulong AB et al (2020) Effects of high-temperature exposure on the mechanical properties of kenaf composites. Polymers 12:1643. https://doi.org/10.3390/POLYM12081643

    Article  Google Scholar 

  88. Tholibon D, Tharazi I, Sulong AB et al (2019) Kenaf fiber composites: a review on synthetic and biodegradable polymer matrix. J Kejuruter 31:65–76. https://doi.org/10.17576/jkukm-2019-31(1)-08

    Article  Google Scholar 

  89. Zaki Abdullah M, Dan-Mallam Y, Megat Yusoff PSM (2013) Effect of environmental degradation on mechanical properties of kenaf/polyethylene terephthalate fiber reinforced polyoxymethylene hybrid Composite. Adv Mater Sci Eng 2013:1–8. https://doi.org/10.1155/2013/671481

    Article  Google Scholar 

  90. Vedrtnam A, Gunwant D, Verma H, Kalauni K (2022) Effect of aging and UV exposure on mechanical properties of natural fiber composites. In: Muthukumar C, Krishnasamy S, Thiagamani SMK, Siengchin S (eds) Aging effects on natural fiber-reinforced polymer composites: durability and life prediction. Springer Singapore, pp 189–217

  91. Zampaloni M, Pourboghrat F, Yankovich SA et al (2007) Kenaf natural fiber reinforced polypropylene composites: a discussion on manufacturing problems and solutions. Compos Part A Appl Sci Manuf 38:1569–1580. https://doi.org/10.1016/j.compositesa.2007.01.001

    Article  Google Scholar 

  92. Salman SD, Leman Z, Sultan MTH et al (2016) Influence of fiber content on mechanical and morphological properties of woven kenaf reinforced PVB film produced using a hot press technique. Int J Polym Sci 2016:1–11. https://doi.org/10.1155/2016/7828451

    Article  Google Scholar 

  93. Abbas AGN, Aziz FNAA, Abdan K et al (2022) Kenaf fibre reinforced cementitious composites. Fibers 10:1–24. https://doi.org/10.3390/fib10010003

    Article  Google Scholar 

  94. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42:856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

    Article  Google Scholar 

  95. Owen MM, Achukwu EO, Romli AZ et al (2023) Improved thermal and mechanical properties of kenaf fiber/ ABS polymer composites via resin coating treatment. Pertanika J Sci Technol 31:39–57. https://doi.org/10.47836/pjst.31.S1.03

    Article  Google Scholar 

  96. Mansingh BB, Binoj JS, Manikandan N et al (2022) Kenaf fibers, their composites and applications. In: Sanjay MR, Parameswaranpillai J et al (eds) Plant fibers, their composites, and applications. Elsevier, Amsterdam, pp 283–304

  97. Mohammed M, Jawad AJ afar M, Mohammed AM et al (2023) Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polym Test 6:108083. https://doi.org/10.1016/j.polymertesting.2023.108083

  98. Loganathan TM, Sultan MTH, Ahsan Q et al (2022) Thermal degradation, visco-elastic and fire-retardant behavior of hybrid Cyrtostachys Renda/kenaf fiber-reinforced MWCNT-modified phenolic composites. J Therm Anal Calorim 147:14079–14096. https://doi.org/10.1007/s10973-022-11557-4

    Article  Google Scholar 

  99. Asumani O, Paskaramoorthy R (2021) Fatigue and impact strengths of kenaf fibre reinforced polypropylene composites: effects of fibre treatments. Adv Compos Mater 30:103–115. https://doi.org/10.1080/09243046.2020.1733308

    Article  Google Scholar 

  100. Ragunathan S, Zainab NAN, Andrew AM et al (2021) Characterization and properties of PP/NBRv/kenaf fibre composites with silane treatment. In: Bahari M, Harun A, Zainal Abidin Z et al (eds) Intelligent manufacturing and mechatronics. Lecture notes in mechanical engineering. Springer, Singapore, pp 785–791

  101. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432. https://doi.org/10.1016/j.compscitech.2007.06.022

    Article  Google Scholar 

  102. Fauzi MFM, Asyraf MRM, Hassan SA et al (2023) Hybrid kenaf fibre/fibreglass meshes reinforced thermoplastic ABS composites based on quasi-isotropic Mechanism: a brief review. J Nat Fibre Polym Compos 2:1–9

    Google Scholar 

  103. Nematollahi M, Karevan M, Mosaddegh P, Farzin M (2019) Morphology, thermal and mechanical properties of extruded injection molded kenaf fiber reinforced polypropylene composites. Mater Res Express 6:1–12. https://doi.org/10.1088/2053-1591/ab2fbd

    Article  Google Scholar 

  104. Cho D, Lee HS, Han SO (2009) Effect of fiber surface modification on the interfacial and mechanical properties of kenaf fiber-reinforced thermoplastic and thermosetting polymer composites. Compos Interfaces 16:711–729. https://doi.org/10.1163/092764409X12477427307537

    Article  Google Scholar 

  105. Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali-silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos Part A Appl Sci Manuf 43:1431–1440. https://doi.org/10.1016/j.compositesa.2012.04.007

    Article  Google Scholar 

  106. Azizah AB, Rozman HD, Azniwati AA, Tay GS (2020) The effect of filler loading and silane treatment on kenaf core reinforced polyurethane composites: mechanical and thermal properties. J Polym Environ 28:517–531. https://doi.org/10.1007/s10924-019-01623-8

  107. Oyekanmi AA, Saharudin NI, Hazwan CM et al (2021) Improved hydrophobicity of macroalgae biopolymer film incorporated with kenaf derived cnf using silane coupling agent. Molecules 26:2254. https://doi.org/10.3390/molecules26082254

  108. Sallehuddin NJ, Ismail H (2020) Effects of silane treatment on tensile properties and surface morphology of kenaf bast filled natural rubber latex foam. AIP conference proceedings 2267:020012. https://doi.org/10.1063/5.0016555

  109. Sreekala MS, Kumaran MG, Thomas S (1997) Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. J Appl Polym Sci 66:821–835. https://doi.org/10.1002/(sici)1097-4628(19971031)66:5%3c821::aid-app2%3e3.3.co;2-l

    Article  Google Scholar 

  110. Zou H, Wang L, Gan H, Yi C (2012) Effect of fiber surface treatments on the properties of short sisal fiber/poly(lactic acid) biocomposites. Polym Compos 33:1659–1666. https://doi.org/10.1002/pc.22295

  111. Nirmal U, Hashim J, Megat Ahmad MMH (2015) A review on tribological performance of natural fibre polymeric composites. Tribol Int 83:77–104. https://doi.org/10.1016/j.triboint.2014.11.003

    Article  Google Scholar 

  112. Samanth M, Subrahmanya Bhat K (2023) Conventional and unconventional chemical treatment methods of natural fibres for sustainable biocomposites. Sustain Chem Clim Action 3:100034. https://doi.org/10.1016/j.scca.2023.100034

    Article  Google Scholar 

  113. Herrera Franco PJ, Valadez-González A (2005) Fiber-matrix adhesion in natural fiber composites. In: natural fibers, biopolymers, and biocomposites, pp 177–230

  114. Ibrahim MI, Hassan MZ, Dolah R et al (2018) Tensile behaviour for mercerization of single kenaf fiber. Malays J Fundam Appl Sci 14:437–439. https://doi.org/10.11113/mjfas.v14n4.1099

    Article  Google Scholar 

  115. Agrawal R, Saxena NS, Sharma KB et al (2000) Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng A 277:77–82. https://doi.org/10.1016/S0921-5093(99)00556-0

    Article  Google Scholar 

  116. Idumah CI, Ogbu JE, Ndem JU, Obiana V (2019) Influence of chemical modification of kenaf fiber on xGNP-PP nano-biocomposites. SN Appl Sci 1:1261. https://doi.org/10.1007/s42452-019-1319-1

    Article  Google Scholar 

  117. Gaisford S, Kett V, Haines P (2002) Principles of thermal analysis and calorimetry. Royal society of chemistry, Cambridge, UK

    Google Scholar 

  118. (2020) Dynamic mechanical analysis. In: InTech Gr. Plc. https://www.intertek.com/polymers/testlopedia/dynamic-mechanical-analysis/. Accessed 13 Jul 2020

  119. Anuar H, Zuraida A (2011) Thermal properties of injection moulded polylactic acid – kenaf fibre biocomposite. Malaysian Polym J 6:51–57. https://doi.org/10.1007/s13398-014-0173-7.2

    Article  Google Scholar 

  120. Majhi SK, Nayak SK, Mohanty S, Unnikrishnan L (2010) Mechanical and fracture behavior of banana fiber reinforced polylactic acid biocomposites. Int J Plast Technol 14:57–75. https://doi.org/10.1007/s12588-010-0010-6

    Article  Google Scholar 

  121. Jawaid M, Abdul Khalil HPS, Hassan A et al (2013) Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos Part B Eng 45:619–624. https://doi.org/10.1016/j.compositesb.2012.04.068

    Article  Google Scholar 

  122. Ilyas RA, Sapuan MS, Norizan MN et al (2020) Macro to nanoscale natural fiber composites for automotive components: research, development, and application. In: Sapuan MS, Ilyas RA (eds) Biocomposite and synthetic composites for automotive applications. Woodhead Publishing Series, Amsterdam, Netherland, pp 51–105

  123. Joy J, Jose C, Yu X et al (2017) The influence of nanocellulosic fiber, extracted from Helicteres isora, on thermal, wetting and viscoelastic properties of poly(butylene succinate) composites. Cellulose 24:4313–4323. https://doi.org/10.1007/s10570-017-1439-y

    Article  Google Scholar 

  124. Zhang Z, Wang P, Wu J (2012) Dynamic mechanical properties of EVA polymer-modified cement paste at early age. Phys Procedia 25:305–310. https://doi.org/10.1016/j.phpro.2012.03.088

    Article  Google Scholar 

  125. Kosbar LL, Wenzel TJ (2017) Inclusion of synthetic polymers within the curriculum of the ACS certified undergraduate degree. J Chem Educ 94:1599–1602. https://doi.org/10.1021/acs.jchemed.6b00922

    Article  Google Scholar 

  126. Mahdi EM, Tan JC (2016) Dynamic molecular interactions between polyurethane and ZIF-8 in a polymer-MOF nanocomposite: microstructural, thermo-mechanical and viscoelastic effects. Polymer 97:31–43. https://doi.org/10.1016/j.polymer.2016.05.012

    Article  Google Scholar 

  127. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159. https://doi.org/10.1016/j.conbuildmat.2015.12.075

    Article  Google Scholar 

  128. Lee BH, Kim HS, Lee S et al (2009) Bio-composites of kenaf fibers in polylactide: Role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579. https://doi.org/10.1016/j.compscitech.2009.07.015

    Article  Google Scholar 

  129. Sis ALM, Ibrahim NA, Yunus WMZW (2013) Effect of (3-aminopropyl)trimethoxysilane on mechanical properties of PLA/PBAT blend reinforced kenaf fiber. Iran Polym J Eng Ed 22:101–108. https://doi.org/10.1007/s13726-012-0108-0

    Article  Google Scholar 

  130. Chung TJ, Park JW, Lee HJ et al (2018) The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Appl Sci 8:376. https://doi.org/10.3390/app8030376

  131. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interfaces 15:169–191. https://doi.org/10.1163/156855408783810920

    Article  Google Scholar 

  132. Bakar NA, Chee CY, Abdullah LC et al (2015) Thermal and dynamic mechanical properties of grafted kenaf filled poly (vinyl chloride)/ethylene vinyl acetate composites. Mater Des 65:204–211. https://doi.org/10.1016/j.matdes.2014.09.027

    Article  Google Scholar 

  133. Kumar M, Mohanty S, Nayak SK, Rahail Parvaiz M (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415. https://doi.org/10.1016/j.biortech.2010.05.075

    Article  Google Scholar 

  134. Ibrahim NA, Yunus WM, Othman M et al (2010) Poly(Lactic Acid) (PLA)-reinforced kenaf bast fiber composites: the effect of triacetin. J Reinf Plast Compos 29:1099–1111. https://doi.org/10.1177/0731684409344651

    Article  Google Scholar 

  135. Dupraz AMP, De Wijn JR, Meer SATVD, De Groot K (1996) Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J Biomed Mater Res 30:231–238. https://doi.org/10.1002/(SICI)1097-4636(199602)30:2%3c231::AID-JBM13%3e3.0.CO;2-P

    Article  Google Scholar 

  136. Herrera-Franco P, Valadez-Gonzalez A, Cervantes-Uc M (1997) Development and characterization of a HDPE-sand-natural fiber composite. Compos Part B Eng 28:331–343. https://doi.org/10.1016/S1359-8368(96)00024-8

    Article  Google Scholar 

  137. Singh B, Verma A, Gupta M (1998) Studies on adsorptive interaction between natural fiber and coupling agents. J Appl Polym Sci 70:1847–1858. https://doi.org/10.1002/(SICI)1097-4628(19981128)70:93.0.CO;2-P

    Article  Google Scholar 

  138. Ali SSS, Razman MR, Awang A et al (2021) Critical determinants of household electricity consumption in a rapidly growing city. Sustainability 13:4441. https://doi.org/10.3390/su1308444

    Article  Google Scholar 

  139. Roslan ZB, Ramli Z, Razman MR et al (2021) Reflections on local community identity by evaluating heritage sustainability protection in Jugra, Selangor. Malays Sustain 13:8705. https://doi.org/10.3390/su13168705

    Article  Google Scholar 

  140. Owen MM, Achukwu EO, Bin SS et al (2023) Effects of high-temperature optimization and resin coating treatment on the mechanical, thermal, and morphological properties of natural kenaf fiber-filled engineering plastic composites. Polym Compos 44:2512–2529. https://doi.org/10.1002/pc.27260

    Article  Google Scholar 

  141. Owen MM, Achukwu EO, Romli AZ, Akil HM (2023) Recent advances on improving the mechanical and thermal properties of kenaf fibers/engineering thermoplastic composites using novel coating techniques: a review. Compos Interfaces 30:849–875. https://doi.org/10.1080/09276440.2023.2179238

    Article  Google Scholar 

  142. Ilyas RA, Sapuan SM, Harussani MM et al (2021) Polylactic acid (PLA) Biocomposite: processing, additive manufacturing and advanced applications. Polymers 13:1326. https://doi.org/10.3390/polym13081326

    Article  Google Scholar 

  143. Azman MA, Asyraf MRM, Khalina A et al (2021) Natural fiber reinforced composite material for product design: a short review. Polymers 13:1917. https://doi.org/10.3390/polym13121917

    Article  Google Scholar 

  144. Asyraf MRM, Rafidah M, Ishak MR et al (2020) Integration of TRIZ, morphological chart and ANP method for development of FRP composite portable fire extinguisher. Polym Compos 41:2917–2932. https://doi.org/10.1002/pc.25587

    Article  Google Scholar 

  145. Mansor MR, Sapuan SM, Hambali A (2015) Conceptual design of kenaf polymer composites automotive spoiler using TRIZ and morphology chart methods. App Mech Mat 761:63–67. https://doi.org/10.4028/www.scientific.net/AMM.761.63

  146. Azammi AMN, Sapuan SM, Ishak MR, Sultan MTH (2018) Conceptual design of automobile engine rubber mounting composite using TRIZ-Morphological chart-analytic network process technique. Def Technol 14:268–277. https://doi.org/10.1016/j.dt.2018.05.009

    Article  Google Scholar 

  147. Sapuan SM, Purushothman KR, Sanyang ML, Mansor MR (2018) Design and fabrication of kenaf fibre reinforced polymer composites for portable laptop table. In: Kalia S (ed) Lignocellulosic composite materials. Springer Nature, Gewerbestrasse, Switzerland, pp 323–356

  148. Atiqah A, Maleque MA, Jawaid M, Iqbal M (2014) Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos Part B Eng 56:68–73. https://doi.org/10.1016/j.compositesb.2013.08.019

  149. Mansor MR, Sapuan SM, Zainudin ES et al (2013) Hybrid natural and glass fibers reinforced polymer composites material selection using analytical hierarchy process for automotive brake lever design. Mater Des 51:484–492. https://doi.org/10.1016/j.matdes.2013.04.072

    Article  Google Scholar 

  150. Pang C, Shanks RA, Daver F (2015) Characterization of kenaf fiber composites prepared with tributyl citrate plasticized cellulose acetate. Compos Part A Appl Sci Manuf 70:52–58. https://doi.org/10.1016/j.compositesa.2014.12.003

    Article  Google Scholar 

  151. Nurazzi NM, Asyraf MRM, Rayung M et al (2021) Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: a review on influence of chemical treatments. Polymers (Basel) 13:2710. https://doi.org/10.3390/polym13162710

    Article  Google Scholar 

  152. Xue Y, Du Y, Elder S et al (2009) Temperature and loading rate effects on tensile properties of kenaf bast fiber bundles and composites. Compos Part B Eng 40:189–196. https://doi.org/10.1016/j.compositesb.2008.11.009

    Article  Google Scholar 

  153. Misri S, Ishak MR, Sapuan SM, Leman Z (2015) The effect of winding angles on crushing behavior of filament wound hollow kenaf yarn fibre reinforced unsaturated polyester composites. Fibers Polym 16:2266–2275. https://doi.org/10.1007/s12221-015-5447-y

    Article  Google Scholar 

  154. Hafizah NAK, Bhutta MAR, Jamaludin MY et al (2014) Kenaf fiber reinforced polymer composites for strengthening RC beams. J Adv Concr Technol 12:167–177. https://doi.org/10.3151/jact.12.167

    Article  Google Scholar 

  155. Abdelrhman HA, Shahwahid M, Paridah MT et al (2017) Carbon stored in kenaf fiber utilization of biocomposite applications into automotive components. Int J Latest Eng Res Appl 02:56–53

    Google Scholar 

Download references

Acknowledgements

The authors would like to express gratitude for the financial support received from the Universiti Teknologi Malaysia, the UTM Encouragement Research Grant (UTMER) project “Characterizations of Hybrid Kenaf Fibre/Glass fibre Meshes Reinforced Thermoplastic ABS Composites for Future Use in Aircraft Radome Applications, grant number PY/2022/03758—Q.J130000.3824.31J25.”

Author information

Authors and Affiliations

Authors

Contributions

MRMA and PS drafted the original manuscript. MRMA, NNM, and DDCV have revised the manuscript. MRMA conceptualized the idea of the manuscript.

Corresponding author

Correspondence to M. R. M. Asyraf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asyraf, M.R.M., Sheng, D.D.C.V., Mas’ood, N.N. et al. Thermoplastic composites reinforced chemically modified kenaf fibre: current progress on mechanical and dynamic mechanical properties. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05659-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05659-2

Keywords

Navigation