Skip to main content
Log in

Ultrasound and microwave-assisted extractions as green and efficient approaches to recover anthocyanin from black rice bran

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Extraction techniques are one way to separate bioactive compounds from agro-industrial material. Emerging technologies for the extraction of bioactive compounds, such as ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE), are preferable to conventional extraction techniques because they are more efficient, spend less time, and are environmentally friendly. This study compared ultrasound (UAE) and microwave (MAE) assisted extraction techniques to recover anthocyanins from black rice bran. By optimizing using Box Behnken design, for UAE, 83.73% of the total anthocyanins (2.44 mg C3G/g) were recovered, using as parameters temperature 50°C, a frequency 380 W, and a solvent 60:40 (v/v) citric acid 0.1 M:ethanol. For MAE, it was possible to recover 81.44% of the total anthocyanins (2.37 mg C3G/g), using parameters temperature 55°C, citric acid 0.1M:ethanol (50:50, v/v), and a mass of 0.8 g (1:24, g/ml). Both techniques were considered ecologically green by the Green Certificate (A) and excellent methods by EcoScale (scores higher than 75). Anthocyanin-rich extracts did not show cytotoxicity for L292 cells (1000 μg/mL) and showed cytoprotection (> 92% using 500 μg/mL) when subjected to oxidative stress with H2O2. Both extracts showed technological potential as a natural dye and as an ingredient of nutraceutical products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Das AB, Goud VV, Das C (2017) Extraction of phenolic compounds and anthocyanin from black and purple rice bran (Oryza sativa L.) using ultrasound: a comparative analysis and phytochemical profiling. Ind Crops Prod 95:332–341. https://doi.org/10.1016/j.indcrop.2016.10.041

    Article  CAS  Google Scholar 

  2. Leonarski E, Kuasnei M, Cesca K et al (2023) Black rice and its by-products: anthocyanin-rich extracts and their biological potential. Crit Rev Food Sci Nutr 0:1–19. https://doi.org/10.1080/10408398.2023.2211169

    Article  CAS  Google Scholar 

  3. Halee A, Supavititpatana P, Ruttarattanamongkol K et al (2020) Optimisation of the microwave-assisted extraction of natural antioxidants from defatted black rice bran of Oryza sativa L.CV. homnin. J Microbiol Biotechnol Food Sci 9:1134–1140. https://doi.org/10.15414/JMBFS.2020.9.6.1134-1140

    Article  CAS  Google Scholar 

  4. Luzardo-Ocampo I, Ramírez-Jiménez AK, Yañez J et al (2021) Technological applications of natural colorants in food systems: a review. Foods 10:1–34. https://doi.org/10.3390/foods10030634

    Article  CAS  Google Scholar 

  5. Tena N, Martín J, Asuero AG (2020) State of the art of anthocyanins: antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9. https://doi.org/10.3390/antiox9050451

  6. Lee J, Rennaker C, Wrolstad RE (2008) Correlation of two anthocyanin quantification methods: HPLC and spectrophotometric methods. Food Chem 110:782–786. https://doi.org/10.1016/j.foodchem.2008.03.010

    Article  CAS  Google Scholar 

  7. Leonarski E, Kuasnei M, Moraes PAD et al (2023) Pressurized liquid extraction as an eco-friendly approach to recover anthocyanin from black rice bran. Innov Food Sci Emerg Technol 86. https://doi.org/10.1016/j.ifset.2023.103372

  8. Fernandes TS, Ferreira GMD, Silva GA et al (2021) Extraction of anthocyanins from the byproduct and wastes of black rice production by ecofriendly method. Sep Sci Technol 00:1–12. https://doi.org/10.1080/01496395.2021.1992437

    Article  CAS  Google Scholar 

  9. Perera CO, Alzahrani MAJ (2021) Ultrasound as a pre-treatment for extraction of bioactive compounds and food safety: a review. Lwt 142:111114. https://doi.org/10.1016/j.lwt.2021.111114

    Article  CAS  Google Scholar 

  10. Shirsath SR, Sable SS, Gaikwad SG et al (2017) Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: effect of different operating parameters. Ultrason Sonochem 38:437–445. https://doi.org/10.1016/j.ultsonch.2017.03.040

    Article  CAS  PubMed  Google Scholar 

  11. Moreira SA, Alexandre EMC, Pintado M, Saraiva JA (2019) Effect of emergent non-thermal extraction technologies on bioactive individual compounds profile from different plant materials. Food Res Int 115:177–190. https://doi.org/10.1016/j.foodres.2018.08.046

    Article  CAS  PubMed  Google Scholar 

  12. Tena N, Asuero AG (2022) Up-to-date analysis of the extraction methods for anthocyanins: principles of the techniques, optimization, technical progress, and industrial application. Antioxidants 11. https://doi.org/10.3390/antiox11020286

  13. Chemat F, Rombaut N, Sicaire AG et al (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  CAS  PubMed  Google Scholar 

  14. Thakur R, Gupta V, Dhar P et al (2022) Ultrasound-assisted extraction of anthocyanin from black rice bran using natural deep eutectic solvents: Optimization, diffusivity, and stability. J Food Process Preserv 46. https://doi.org/10.1111/jfpp.16309

  15. Coelho MC, Pereira RN, Rodrigues AS et al (2020) The use of emergent technologies to extract added value compounds from grape by-products. Trends Food Sci Technol 106:182–197. https://doi.org/10.1016/j.tifs.2020.09.028

    Article  CAS  Google Scholar 

  16. Bagade SB, Patil M (2021) Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Crit Rev Anal Chem 51:138–149. https://doi.org/10.1080/10408347.2019.1686966

    Article  CAS  PubMed  Google Scholar 

  17. Moirangthem K, Ramakrishna P, Amer MH, Tucker GA (2021) Bioactivity and anthocyanin content of microwave-assisted subcritical water extracts of Manipur black rice (Chakhao) bran and straw. Futur Foods 3:100030. https://doi.org/10.1016/j.fufo.2021.100030

    Article  CAS  Google Scholar 

  18. Abdel-Aal E-SM, Akhtar H, Rabalski I, Bryan M (2014) Accelerated, microwave-assisted, and conventional solvent extraction methods affect anthocyanin composition from colored grains. J Food Sci 79:C138–C146. https://doi.org/10.1111/1750-3841.12346

    Article  CAS  PubMed  Google Scholar 

  19. Jha P, Das AJ, Deka SC (2017) Optimization of ultrasound and microwave assisted extractions of polyphenols from black rice (Oryza sativa cv. Poireton) husk. J Food Sci Technol 54:3847–3858. https://doi.org/10.1007/s13197-017-2832-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Benvenutti L, Zielinski AAF, Ferreira SRS (2022) Pressurized aqueous solutions of deep eutectic solvent (DES): a green emergent extraction of anthocyanins from a Brazilian berry processing by-product. Food Chem X 13. https://doi.org/10.1016/j.fochx.2022.100236

  21. Mónica Giusti M, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV-visible spectroscopy. Handb Food Anal Chem 2–2:19–31. https://doi.org/10.1002/0471709085.ch18

    Article  Google Scholar 

  22. Vernon LS, Rudolf O, Rosa ML-R (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299:152–178

    Article  Google Scholar 

  23. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  24. Re R, Pellegrini N, Proteggente A et al (1999) Development and characterisation of carbon nanotube-reinforced polyurethane foams. EMPA Act 26:51. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  25. Sajid M, Płotka-Wasylka J (2022) Green analytical chemistry metrics: a review. Talanta 238. https://doi.org/10.1016/j.talanta.2021.123046

  26. Van Aken K, Strekowski L, Patiny L (2006) EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J Org Chem 2:1–7. https://doi.org/10.1186/1860-5397-2-3

    Article  CAS  Google Scholar 

  27. Teixeira RF, Benvenutti L, Burin VM et al (2021) An eco-friendly pressure liquid extraction method to recover anthocyanins from broken black bean hulls. Innov Food Sci Emerg Technol 67:102587. https://doi.org/10.1016/j.ifset.2020.102587

    Article  CAS  Google Scholar 

  28. Boateng ID, Kumar R, Daubert CR et al (2023) Sonoprocessing improves phenolics profile, antioxidant capacity, structure, and product qualities of purple corn pericarp extract. Ultrason Sonochem 95:106418. https://doi.org/10.1016/j.ultsonch.2023.106418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Lin Y, Huang L et al (2020) Composition, antioxidant, and anti-biofilm activity of anthocyanin-rich aqueous extract from purple highland barley bran. Lwt 125:109181. https://doi.org/10.1016/j.lwt.2020.109181

  30. Rocha CB, Noreña CPZ (2020) Microwave-assisted extraction and ultrasound-assisted extraction of bioactive compounds from grape pomace. Int J Food Eng 16:1–10. https://doi.org/10.1515/ijfe-2019-0191

    Article  CAS  Google Scholar 

  31. Celli GB, Ghanem A, Brooks MSL (2015) Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology. Ultrason Sonochem 27:449–455. https://doi.org/10.1016/j.ultsonch.2015.06.014

    Article  CAS  PubMed  Google Scholar 

  32. Albuquerque BR, Pinela J, Barros L et al (2020) Anthocyanin-rich extract of jabuticaba epicarp as a natural colorant: optimization of heat- and ultrasound-assisted extractions and application in a bakery product. Food Chem 316:126364. https://doi.org/10.1016/j.foodchem.2020.126364

    Article  CAS  PubMed  Google Scholar 

  33. Dranca F, Oroian M (2016) Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason Sonochem 31:637–646. https://doi.org/10.1016/j.ultsonch.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  34. Pinela J, Prieto MA, Pereira E et al (2019) Optimization of heat- and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chem 275:309–321. https://doi.org/10.1016/j.foodchem.2018.09.118

    Article  CAS  PubMed  Google Scholar 

  35. de Sabino LBS, Filho EGA, Fernandes FAN et al (2021) Optimization of pressurized liquid extraction and ultrasound methods for recovery of anthocyanins present in jambolan fruit (Syzygium cumini L.). Food Bioprod Process 127:77–89. https://doi.org/10.1016/j.fbp.2021.02.012

    Article  CAS  Google Scholar 

  36. Routray W, Orsat V (2012) Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol 5:409–424. https://doi.org/10.1007/s11947-011-0573-z

    Article  CAS  Google Scholar 

  37. Jafari SM, Mahdavee Khazaei K, Assadpour E (2019) Production of a natural color through microwave-assisted extraction of saffron tepal’s anthocyanins. Food Sci Nutr 7:1438–1445. https://doi.org/10.1002/fsn3.978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng X, Xu X, Liu C et al (2013) Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Sep Purif Technol 104:17–25. https://doi.org/10.1016/j.seppur.2012.11.011

    Article  CAS  Google Scholar 

  39. Izirwan I, Munusamy TD, Hamidi NH, Sulaiman SZ (2020) Optimization of microwave-assisted extraction of anthocyanin from Clitoria ternatea flowers. Int J Mech Eng Robot Res 9:1246–1252. https://doi.org/10.18178/ijmerr.9.9.1246-1252

    Article  Google Scholar 

  40. Lao F, Giusti MM (2018) Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. J Cereal Sci 80:87–93. https://doi.org/10.1016/j.jcs.2018.01.001

    Article  CAS  Google Scholar 

  41. Zielinski AAF, del Sanchez-Camargo AP, Benvenutti L et al (2021) High-pressure fluid technologies: recent approaches to the production of natural pigments for food and pharmaceutical applications. Trends Food Sci Technol 118:850–869. https://doi.org/10.1016/j.tifs.2021.11.008

    Article  CAS  Google Scholar 

  42. Ashitha GN, Prince M V., Sanjay P (2020) Microwave assisted extraction of anthocyanin from Hibiscus rosa-sinensis. J Pharmacogn Phytochem 9:1418–1424. https://doi.org/10.22271/phyto.2020.v9.i2w.11047

  43. Horžić D, Jambrak AR, Belščak-Cvitanović A et al (2012) Comparison of conventional and ultrasound assisted extraction techniques of yellow tea and bioactive composition of obtained extracts. Food Bioprocess Technol 5:2858–2870. https://doi.org/10.1007/s11947-012-0791-z

    Article  Google Scholar 

  44. Mozafari L, Cano-Lamadrid M, Martínez-Zamora L et al (2023) Effect of ultrasound-assisted extraction with probe or bath on total phenolics from tomato and lemon by-products. In: Foods 2023. MDPI, Basel Switzerland, p 30

    Chapter  Google Scholar 

  45. Ito VC, Lacerda LG (2019) Black rice (Oryza sativa L.): a review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem 301:125304. https://doi.org/10.1016/j.foodchem.2019.125304

    Article  CAS  PubMed  Google Scholar 

  46. Laokuldilok T, Shoemaker CF, Jongkaewwattana S, Tulyathan V (2011) Antioxidants and antioxidant activity of several pigmented rice brans. J Agric Food Chem 59:193–199. https://doi.org/10.1021/jf103649q

    Article  CAS  PubMed  Google Scholar 

  47. Chañi-Paucar LO, Silva JWL, Maciel MIS, de Lima VLAG (2021) Simplified process of extraction of polyphenols from agroindustrial grape waste. Food Sci Technol 41:723–731. https://doi.org/10.1590/fst.31120

    Article  Google Scholar 

  48. Wang B, Yang S, Xu L et al (2022) Evaluation study on extraction of anthocyanins from red cabbage using high pressure CO2 + H2O: a fuzzy logic model and metabolomic analysis. Sustain 14. https://doi.org/10.3390/su14031369

  49. Agcam E, Akyıldız A, Kamat S, Balasubramaniam VM (2021) Bioactive compounds extraction from the black carrot pomace with assistance of high pressure processing: an optimization study. Waste Biomass Valoriz 12:5959–5977. https://doi.org/10.1007/s12649-021-01431-z

    Article  CAS  Google Scholar 

  50. Jiang T, Mao Y, Sui L et al (2019) Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food Chem 274:460–470. https://doi.org/10.1016/j.foodchem.2018.07.141

    Article  CAS  PubMed  Google Scholar 

  51. Wang W, Jung J, Tomasino E, Zhao Y (2016) Optimization of solvent and ultrasound-assisted extraction for different anthocyanin rich fruit and their effects on anthocyanin compositions. LWT 72:229–238. https://doi.org/10.1016/j.lwt.2016.04.041

    Article  CAS  Google Scholar 

  52. Setyaningsih W, Saputro IE, Palma M, Barroso CG (2016) Pressurized liquid extraction of phenolic compounds from rice (Oryza sativa) grains. Food Chem 192:452–459. https://doi.org/10.1016/j.foodchem.2015.06.102

    Article  CAS  PubMed  Google Scholar 

  53. Das AB, Goud VV, Das C (2018) Extraction and characterization of phenolic content from purple and black rice (Oryza sativa L) bran and its antioxidant activity. J Food Meas Charact 12:332–345. https://doi.org/10.1007/s11694-017-9645-8

    Article  Google Scholar 

  54. Finocchiaro F, Ferrari B, Gianinetti A (2010) A study of biodiversity of flavonoid content in the rice caryopsis evidencing simultaneous accumulation of anthocyanins and proanthocyanidins in a black-grained genotype. J Cereal Sci 51:28–34. https://doi.org/10.1016/j.jcs.2009.09.003

    Article  CAS  Google Scholar 

  55. Armenta S, Garrigues S, de la Guardia M (2015) The role of green extraction techniques in Green Analytical Chemistry. TrAC - Trends Anal Chem 71:2–8. https://doi.org/10.1016/j.trac.2014.12.011

    Article  CAS  Google Scholar 

  56. Gallart-Mateu D, Cervera ML, Armenta S, De La Guardia M (2015) The importance of incorporating a waste detoxification step in analytical methodologies. Anal Methods 7:5702–5706. https://doi.org/10.1039/c5ay01202c

    Article  CAS  Google Scholar 

  57. Espino M, de los Fernández MÁ, FJV G et al (2018) Green analytical chemistry metrics: towards a sustainable phenolics extraction from medicinal plants. Microchem J 141:438–443. https://doi.org/10.1016/j.microc.2018.06.007

    Article  CAS  Google Scholar 

  58. Abd-Elsalam HAH, Gamal M, Naguib IA et al (2021) Development of green and efficient extraction methods of quercetin from red onion scales wastes using factorial design for method optimization: a comparative study. Separations 8. https://doi.org/10.3390/separations8090137

  59. Deneyer A, Ennaert T, Sels BF (2018) Straightforward sustainability assessment of sugar-derived molecules from first-generation biomass. Curr Opin Green Sustain Chem 10:11–20. https://doi.org/10.1016/j.cogsc.2018.02.003

    Article  Google Scholar 

  60. ISO 10993-5:2009 (2009) International Organization for Standardization ISO10993-5:2009. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity

  61. Aprodu I, Milea SA, Anghel RM et al (2019) New functional ingredients based on microencapsulation of aqueous anthocyanin-rich extracts derived from black rice (Oryza sativa L.). Molecules 24:1–14. https://doi.org/10.3390/molecules24183389

    Article  CAS  Google Scholar 

  62. Leonarski E, Cesca K, de Oliveira D, Zielinski AAF (2022) A review on enzymatic acylation as a promising opportunity to stabilizing anthocyanins. Crit Rev Food Sci Nutr:1–20. https://doi.org/10.1080/10408398.2022.2041541

  63. Guimarães M, Mateus N, De Freitas V, Cruz L (2018) Improvement of the color stability of cyanidin-3-glucoside by fatty acid enzymatic acylation. J Agric Food Chem 66:10003–10010. https://doi.org/10.1021/acs.jafc.8b03536

    Article  CAS  PubMed  Google Scholar 

  64. Oancea S (2021) A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants 10. https://doi.org/10.3390/antiox10091337

  65. Cheok CY, Ragunathan A (2022) Anthocyanin degradation kinetics and thermodynamic analysis of Hibiscus rosa-sinensis L. Clitoria ternatea L. and Hibiscus sabdariffa L. Prog. Energy Environ 19:1–12. https://doi.org/10.37934/progee.19.1.112

    Article  Google Scholar 

  66. Condurache NN, Croitoru C, Enachi E et al (2021) Eggplant peels as a valuable source of anthocyanins: extraction, thermal stability and biological activities. Plants 10:1–17. https://doi.org/10.3390/plants10030577

    Article  CAS  Google Scholar 

  67. Junior ENM, Martins MG, Pereira GA et al (2023) Stability kinetics of anthocyanins of grumixama berries (Eugenia brasiliensis Lam.) during thermal and light treatments. Foods 12:565. https://doi.org/10.3390/foods12030565

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian agencies, CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES-PRINT (Project numbers 88887.310560/2018-00 and 88887.310727/2018-00).

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

E.L.: conceptualization, methodology, formal analysis, data curation, writing—review and editing. M.K.: conceptualization, methodology, formal analysis, data curation, writing—review and editing. E.H.S: conceptualization, methodology, formal analysis. L.B.: formal analysis. P.A.D.M.: formal Analysis. K.C.: writing—original draft, investigation, visualization, supervision. D.O.: investigation, resources, writing—original draft, visualization, supervision, project administration. A.A.F.Z.: investigation, resources, writing—original draft, visualization, supervision, project administration

Corresponding author

Correspondence to Acácio Antonio Ferreira Zielinski.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 55 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonarski, E., Kuasnei, M., dos Santos, E.H. et al. Ultrasound and microwave-assisted extractions as green and efficient approaches to recover anthocyanin from black rice bran. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05479-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05479-4

Keywords

Navigation