Skip to main content
Log in

Antifungal activity of dialdehyde chitosan against Aspergillus brasiliensis and Candida albicans

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

With rising food insecurity being a global challenge, the strain on food systems is further exacerbated by post-harvest losses occasioned by fungal attacks which result in food contamination. In this case, there is an urgent need to develop new and sustainable bio-based antifungal agents that can control pathogenic fungi during pre-harvest and post-harvest. For this reason, chitosan (Cs), which has been shown to have antifungal properties, is a promising antifungal agent owing to its non-toxicity and biodegradability. This study therefore sought to evaluate the potential applications of dialdehyde chitosan (OCs) synthesized from Cs isolated from Hermetia illucens in the inhibition of two fungal strains that have been found in food matrices. Cs was chemically isolated from Hermetia illucens (black soldier fly) followed by periodate oxidation to introduce carbonyl groups (C = O) in its structure as confirmed by Fourier transform infrared (FTIR) spectroscopy. X-ray fluorescence (XRF), energy-dispersive X-ray (EDX) spectroscopy, and thermogravimetric analysis (TGA) data indicated the removal of extractives, purity, and thermal properties of both Cs and OCs while scanning electronic microscopy (SEM) images of Cs were rougher than OCs and indicative of successful oxidation. Additionally, the Viscometer indicated successful oxidation of Cs evident by a decrease in fluidity of OCs. From the results obtained, the degree of oxidation of the aldehydes increases while the viscosity also decreases with an increase in a molar ratio of KIO4/Cs and the temperature. Using the plate count method, the OCs had significant inhibitory activity against Aspergillus brasiliensis and Candida albicans when compared to Cs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ouadhene MA, Ortega-beltran A, Sanna M, Cotty PJ, Battilani P (2023) Multiple year influences of the aflatoxin biocontrol product AF-X1 on the A. flavus communities associated with maize production in Italy. Toxins (Basel) 15(3):184

    Article  CAS  PubMed  Google Scholar 

  2. Hernández-Ruiz J, Acosta MG, Cano A, Arnao MB (2023) Melatonin as a possible natural anti-viral compound in plant biocontrol. Plants 12(4):781. https://doi.org/10.3390/plants11070890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Segura-Palacios MA et al (2021) Use of natural products on the control of aspergillus flavus and production of aflatoxins in vitro and on tomato fruit. Plants 10(12):2553. https://doi.org/10.3390/plants10122553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D’Amato D, Korhonen J (2021) Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework. Ecol Econ 188:107143. https://doi.org/10.1016/j.ecolecon.2021.107143

    Article  Google Scholar 

  5. Crawford LA et al (2023) A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection. Green Chem 25(21):8558–8569. https://doi.org/10.1039/d3gc01911j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mogilicherla K, Roy A (2023) RNAi-chitosan biopesticides for managing forest insect pests: an outlook. Front For Glob Chang 6:1219685. https://doi.org/10.3389/ffgc.2023.1219685

    Article  Google Scholar 

  7. Loron A, Wang Y, Atanasova V, Richard-Forget F, Gardrat C, Coma V (2023) Chitosan for eco-friendly control of mycotoxinogenic Fusarium graminearum. Food Hydrocoll 134 https://doi.org/10.1016/j.foodhyd.2022.108067

  8. Leo Edward M, Dharanibalaji KC, Kumar KT, Chandrabose ARS, Shanmugharaj AM, Jaisankar V (2022) Preparation and characterisation of chitosan extracted from shrimp shell (Penaeus monodon) and chitosan-based blended solid polymer electrolyte for lithium-ion batteries. Polym Bull 79:587–604. https://doi.org/10.1007/s00289-020-03472-1

    Article  CAS  Google Scholar 

  9. Hahn T et al (2022) Purification of chitin from pupal exuviae of the black soldier fly. Waste Biomass Valorization 13(4):1993–2008. https://doi.org/10.1007/s12649-021-01645-1

    Article  CAS  Google Scholar 

  10. Zhai X, Li C, Ren D, Wang J, Ma C, Abd El-Aty AM (2021) The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: a comprehensive review. Carbohydr Polym 266:118132. https://doi.org/10.1016/j.carbpol.2021.118132

    Article  CAS  PubMed  Google Scholar 

  11. Razmi FA, Ngadi N, Wong S, Inuwa IM, Opotu LA (2019) Kinetics, thermodynamics, isotherm and regeneration analysis of chitosan modified pandan adsorbent. J Clean Prod 231:98–109. https://doi.org/10.1016/j.jclepro.2019.05.228

    Article  CAS  Google Scholar 

  12. Elsayed NH, Monier M, Youssef I (2017) Fabrication of photo-active trans-3-(4-pyridyl)acrylic acid modified chitosan. Carbohydr Polym 172:1–10. https://doi.org/10.1016/j.carbpol.2017.04.072

    Article  CAS  PubMed  Google Scholar 

  13. Hoang HT et al (2021) Dual pH-/thermo-responsive chitosan-based hydrogels prepared using ‘click’ chemistry for colon-targeted drug delivery applications. Carbohydr Polym 260(May):117812. https://doi.org/10.1016/j.carbpol.2021.117812

    Article  CAS  PubMed  Google Scholar 

  14. Kamoun EA (2016) N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications. J Adv Res 7(1):69–77. https://doi.org/10.1016/j.jare.2015.02.002

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  15. Bi R, Yue L, Niazi S, Mahmood I, Sun D (2021) Facile synthesis and antibacterial activity of geraniol conjugated chitosan oligosaccharide derivatives. Carbohydr Polym 251:117099. https://doi.org/10.1016/j.carbpol.2020.117099

    Article  CAS  PubMed  Google Scholar 

  16. Mao S, Wang B, Yue L, Xia W (2021) Effects of citronellol grafted chitosan oligosaccharide derivatives on regulating anti-inflammatory activity. Carbohydr Polym 262:117972. https://doi.org/10.1016/j.carbpol.2021.117972

    Article  CAS  PubMed  Google Scholar 

  17. Alirezvani Z, Dekamin MG, Davoodi F, Valiey E (2018) Melamine-functionalized chitosan: a new bio-based reusable bifunctional organocatalyst for the synthesis of cyanocinnamonitrile intermediates and densely functionalized nicotinonitrile derivatives. ChemistrySelect 3(37):10450–10463. https://doi.org/10.1002/slct.201802010

    Article  CAS  Google Scholar 

  18. Yin M, Li X, Liu Y, Ren X (2021) Functional chitosan/glycidyl methacrylate-based cryogels for efficient removal of cationic and anionic dyes and antibacterial applications. Carbohydr Polym 266:118129. https://doi.org/10.1016/j.carbpol.2021.118129

    Article  CAS  PubMed  Google Scholar 

  19. Fan Q et al (2021) Hydroxypropyltrimethyl ammonium chloride chitosan-based hydrogel as the split H5N1 mucosal adjuvant: structure-activity relationship. Carbohydr Polym 266(1):118139. https://doi.org/10.1016/j.carbpol.2021.118139

    Article  CAS  PubMed  Google Scholar 

  20. Takeshita S, Konishi A, Takebayashi Y, Yoda S, Otake K (2017) Aldehyde approach to hydrophobic modification of chitosan aerogels. Biomacromol 18(7):2172–2178. https://doi.org/10.1021/acs.biomac.7b00562

    Article  CAS  Google Scholar 

  21. Gularte MS et al (2019) Synthesis of chitosan derivatives with organoselenium and organosulfur compounds: characterization, antimicrobial properties and application as biomaterials. Carbohydr Polym 219:240–250. https://doi.org/10.1016/j.carbpol.2019.05.040

    Article  CAS  PubMed  Google Scholar 

  22. Xia L et al (2021) Hemostatic performance of chitosan-based hydrogel and its study on biodistribution and biodegradability in rats. Carbohydr Polym 264:117965. https://doi.org/10.1016/j.carbpol.2021.117965

    Article  CAS  PubMed  Google Scholar 

  23. Pandit AH, Mazumdar N, Imtiyaz K, Alam Rizvi MM, Ahmad S (2020) Self-healing and injectable hydrogels for anticancer drug delivery: a study with multialdehyde gum arabic and succinic anhydride chitosan. ACS Appl Bio Mater 3(12):8460–8470. https://doi.org/10.1021/acsabm.0c00835

    Article  CAS  PubMed  Google Scholar 

  24. Cui J, Sun Y, Wang L, Tan W, Guo Z (2023) Preparation of chitosan derivatives containing aromatic five-membered heterocycles for efficient antimicrobial and antioxidant activities. Int J Biol Macromol 247:125850. https://doi.org/10.1016/j.ijbiomac.2023.125850

    Article  CAS  PubMed  Google Scholar 

  25. Buzón-Durán L, Martín-Gil J, Marcos-Robles JL, Fombellida-Villafruela Á, Pérez-Lebeña E, Martín-Ramos P (2020) Antifungal activity of chitosan oligomers–amino acid conjugate complexes against fusarium culmorum in spelt (Triticum spelta L.). Agronomy 10(9):1427. https://doi.org/10.3390/agronomy10091427

    Article  CAS  Google Scholar 

  26. Hassan MA, Tamer TM, Omer AM, Baset WMA, Abbas E, Mohy-Eldin MS (2023) Therapeutic potential of two formulated novel chitosan derivatives with prominent antimicrobial activities against virulent microorganisms and safe profiles toward fibroblast cells. Int J Pharm 634:122649. https://doi.org/10.1016/j.ijpharm.2023.122649

    Article  CAS  PubMed  Google Scholar 

  27. Li L et al (2024) Synthesis, characterization and antifungal properties of dehydroabietic acid modified chitosan. Int J Biol Macromol 255:128056. https://doi.org/10.1016/j.ijbiomac.2023.128056

    Article  CAS  PubMed  Google Scholar 

  28. Du H et al (2023) Oxidized of chitosan with different molecular weights for potential antifungal and plant growth regulator applications. Int J Biol Macromol 253:126862. https://doi.org/10.1016/j.ijbiomac.2023.126862

    Article  CAS  PubMed  Google Scholar 

  29. Wang F, Deng J, Jiao J, Lu Y, Yang L, Shi Z (2019) The combined effects of Carboxymethyl chitosan and Cryptococcus laurentii treatment on postharvest blue mold caused by Penicillium italicum in grapefruit fruit. Sci Hortic (Amsterdam) 253:35–41. https://doi.org/10.1016/j.scienta.2019.04.031

    Article  CAS  Google Scholar 

  30. Gao K et al (2018) Synthesis, characterization, and anti-phytopathogen evaluation of 6-oxychitosan derivatives containing N-quaternized moieties in its backbone. Int J Polym Sci 2018. https://doi.org/10.1155/2018/3970142

  31. Mi Y et al (2018) Synthesis, characterization, and antifungal property of hydroxypropyltrimethyl ammonium chitosan halogenated acetates. Mar Drugs 16(9):315. https://doi.org/10.3390/md16090315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang J et al (2018) Synthesis, characterization, and the antifungal activity of chitosan derivatives containing urea groups. Int J Biol Macromol 109:1061–1067. https://doi.org/10.1016/j.ijbiomac.2017.11.092

    Article  CAS  PubMed  Google Scholar 

  33. Waśko A, Bulak P, Polak-Berecka M, Nowak K, Polakowski C, Bieganowski A (2016) The first report of the physicochemical structure of chitin isolated from Hermetia illucens. Int J Biol Macromol 92:316–320. https://doi.org/10.1016/j.ijbiomac.2016.07.038

    Article  CAS  PubMed  Google Scholar 

  34. Luo Q et al (2019) Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydr Polym 209:266–275. https://doi.org/10.1016/j.carbpol.2019.01.030

    Article  CAS  PubMed  Google Scholar 

  35. Madivoli ES, Kareru PG, Gachanja AN, Mugo SM, Makhanu DS (2019) Synthesis and characterization of dialdehyde cellulose nanofibers from O. sativa husks. SN Appl Sci 1(7):1–7. https://doi.org/10.1007/s42452-019-0769-9

    Article  CAS  Google Scholar 

  36. Durán VL, Hellwig J, Larsson PT, Wågberg L, Larsson PA (2018) Effect of chemical functionality on the mechanical and barrier performance of nanocellulose films. ACS Appl Nano Mater 1(4):1959–1967. https://doi.org/10.1021/acsanm.8b00452

    Article  CAS  Google Scholar 

  37. Simon J et al (2022) A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy. Carbohydr Polym 278:118887. https://doi.org/10.1016/j.carbpol.2021.118887

    Article  CAS  PubMed  Google Scholar 

  38. Dang X, Liu P, Yang M, Deng H, Shan Z, Zhen W (2019) Production and characterization of dialdehyde cellulose through green and sustainable approach. Cellulose 26(18):9503–9515. https://doi.org/10.1007/s10570-019-02747-9

    Article  CAS  Google Scholar 

  39. Yeo YH, Park WH (2021) Dual-crosslinked, self-healing and thermo-responsive methylcellulose/chitosan oligomer copolymer hydrogels. Carbohydr Polym 258:117705. https://doi.org/10.1016/j.carbpol.2021.117705

    Article  CAS  PubMed  Google Scholar 

  40. Errokh A, Magnin A, Putaux JL, Boufi S (2018) Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers. Cellulose 25(7):3899–3911. https://doi.org/10.1007/s10570-018-1871-7

    Article  CAS  Google Scholar 

  41. Chapa González C, Navarro Arriaga JU, García Casillas PE (2021) Physicochemical properties of chitosan–magnetite nanocomposites obtained with different pH. Polym Polym Compos 29(9S):S1009–S1016. https://doi.org/10.1177/09673911211038461

    Article  CAS  Google Scholar 

  42. Tarani E, Arvanitidis I, Christofilos D, Bikiaris DN, Chrissafis K, Vourlias G (2023) Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study. J Mater Sci 58(4):1621–1639. https://doi.org/10.1007/s10853-022-08125-4

    Article  ADS  CAS  Google Scholar 

  43. Nzilu DM, Madivoli ES, Makhanu DS, Wanakai SI, Kiprono GK, Kareru PG (2023) Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Sci Rep 13(1):14030. https://doi.org/10.1038/s41598-023-41119-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Joyline G, Gachoki KP, Ngure GA, Nyambura C, Shigwenya ME (2023) High swelling carboxymethyl cellulose synthesized from coconut fibers high swelling carboxymethyl cellulose synthesized from coconut. J Nat Fibers 20(2):2283549. https://doi.org/10.1080/15440478.2023.2283549

    Article  CAS  Google Scholar 

  45. Madivoli ES, Schwarte JV, Kareru PG, Gachanja AN, Fromm KM (2023) Stimuli-responsive and antibacterial cellulose-chitosan hydrogels containing polydiacetylene nanosheets. Polymers (Basel) 15(5). https://doi.org/10.3390/polym15051062

  46. Zarandona I et al (2023) Magnetically responsive chitosan-pectin films incorporating Fe3O4 nanoparticles with enhanced antimicrobial activity. Int J Biol Macromol 227:1070–1077. https://doi.org/10.1016/j.ijbiomac.2022.11.286

    Article  CAS  PubMed  Google Scholar 

  47. Eddya M, Tbib B, EL-Hami K (2020) A comparison of chitosan properties after extraction from shrimp shells by diluted and concentrated acids. Heliyon 6(2):e03486. https://doi.org/10.1016/j.heliyon.2020.e03486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wong CY et al (2019) Potential protein and biodiesel sources from black soldier fly larvae: insights of larval harvesting instar and fermented feeding medium. Energies 12(8):1570. https://doi.org/10.3390/en12081570

    Article  CAS  Google Scholar 

  49. Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 164:268–283. https://doi.org/10.1016/j.carbpol.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  50. Liu P et al (2021) Unexpected selective alkaline periodate oxidation of chitin for the isolation of chitin nanocrystals. Green Chem 23(2):745–751. https://doi.org/10.1039/d0gc04054a

    Article  CAS  Google Scholar 

  51. Emami Z, Ehsani M, Zandi M, Foudazi R (2018) Controlling alginate oxidation conditions for making alginate-gelatin hydrogels. Carbohydr Polym 198:509–517. https://doi.org/10.1016/j.carbpol.2018.06.080

    Article  CAS  PubMed  Google Scholar 

  52. Plappert SF et al (2018) Transparent, flexible, and strong 2,3-dialdehyde cellulose films with high oxygen barrier properties. Biomacromol 19(7):2969–2978. https://doi.org/10.1021/acs.biomac.8b00536

    Article  CAS  Google Scholar 

  53. Złotko K, Waśko A, Kamiński DM, Budziak-Wieczorek I, Bulak P, Bieganowski A (2021) Isolation of chitin from black soldier fly (Hermetia illucens) and its usage to metal sorption. Polymers (Basel) 13. https://doi.org/10.3390/polym13050818

  54. Bhavsar PS, Dalla Fontana G, Zoccola M (2021) Sustainable superheated water hydrolysis of black soldier fly exuviae for chitin extraction and use of the obtained chitosan in the textile field. ACS Omega 6(13):8884–8893. https://doi.org/10.1021/acsomega.0c06040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaya M, Erdogan S, Mol A, Baran T (2015) Comparison of chitin structures isolated from seven Orthoptera species. Int J Biol Macromol 72:797–805. https://doi.org/10.1016/j.ijbiomac.2014.09.034

    Article  CAS  PubMed  Google Scholar 

  56. Keshk SMAS, Ramadan AM, Al-Sehemi AG, Irfan A, Bondock S (2017) An unexpected reactivity during periodate oxidation of chitosan and the affinity of its 2, 3-di-aldehyde toward sulfa drugs. Carbohydr Polym 175:565–574. https://doi.org/10.1016/j.carbpol.2017.08.027

    Article  CAS  PubMed  Google Scholar 

  57. Sixto-Berrocal AM, Vázquez-Aldana M, Miranda-Castro SP, Martínez-Trujillo MA, Cruz-Díaz MR (2023) Chitin / chitosan extraction from shrimp shell waste by a completely biotechnological process. Int J Biol Macromol 230. https://doi.org/10.1016/j.ijbiomac.2023.123204

  58. Münster L, Vícha J, Klofáč J, Masař M, Kucharczyk P, Kuřitka I (2017) Stability and aging of solubilized dialdehyde cellulose. Cellulose 24(7):2753–2766. https://doi.org/10.1007/s10570-017-1314-x

    Article  CAS  Google Scholar 

  59. Li P et al (2019) Preparation of chitosan-Cu2+/NH3 physical hydrogel and its properties. Int J Biol Macromol 133:67–75. https://doi.org/10.1016/j.ijbiomac.2019.03.011

    Article  CAS  PubMed  Google Scholar 

  60. Boudemagh D, Venturini P, Fleutot S, Cleymand F (2019) Elaboration of hydroxyapatite nanoparticles and chitosan/hydroxyapatite composites: a present status. Polym Bull 76(5):2621–2653. https://doi.org/10.1007/s00289-018-2483-y

    Article  CAS  Google Scholar 

  61. Zhang X et al (2023) Chitosan enhanced the stability and antibiofilm activity of self-propelled Prussian blue micromotor. Carbohydr Polym 299:120134. https://doi.org/10.1016/j.carbpol.2022.120134

    Article  CAS  PubMed  Google Scholar 

  62. Liu P et al (2020) Structure selectivity of alkaline periodate oxidation on lignocellulose for facile isolation of cellulose nanocrystals. Angew Chemie - Int Ed 59(8):3218–3225. https://doi.org/10.1002/anie.201912053

    Article  CAS  Google Scholar 

  63. Lin YS et al (2021) Sustainable extraction of chitin from spent pupal shell of black soldier fly. Processes 9(6):976

    Article  CAS  Google Scholar 

  64. Wegrzynowska-Drzymalska K et al (2020) Crosslinking of chitosan with dialdehyde chitosan as a new approach for biomedical applications. Materials (Basel) 13(15):1–27. https://doi.org/10.3390/ma13153413

    Article  CAS  Google Scholar 

  65. Kurniasih M, Purwati, Cahyati T, Dewi RS (2018) Carboxymethyl chitosan as an antifungal agent on gauze. Int J Biol Macromol 119:166–171. https://doi.org/10.1016/j.ijbiomac.2018.07.038

    Article  CAS  PubMed  Google Scholar 

  66. Huang G-Q, Zhang Z-K, Cheng L-Y, Xiao J-X (2019) Intestine-targeted delivery potency of O-carboxymethyl chitosan–coated layer-by-layer microcapsules: an in vitro and in vivo evaluation. Mater Sci Eng C 105:110129. https://doi.org/10.1016/j.msec.2019.110129

    Article  CAS  Google Scholar 

  67. Hadi Z, Navarchian AH, Rafienia M (2023) Synthesis of pH-responsive carboxymethyl chitosan for encapsulating tetracycline-HCl: morphology, drug release behavior and antibacterial activity of microcapsules. J Drug Deliv Sci Technol 84:104462. https://doi.org/10.1016/j.jddst.2023.104462

    Article  CAS  Google Scholar 

  68. Ren J, Tong J, Li P, Huang X, Dong P, Ren M (2021) Chitosan is an effective inhibitor against potato dry rot caused by Fusarium oxysporum. Physiol Mol Plant Pathol 113:101601. https://doi.org/10.1016/j.pmpp.2021.101601

    Article  CAS  Google Scholar 

  69. Suwanchaikasem P, Nie S, Selby-Pham J, Walker R, Boughton BA, Idnurm A (2023) Hormonal and proteomic analyses of southern blight disease caused by Athelia rolfsii and root chitosan priming on Cannabis sativa in an in vitro hydroponic system. Plant Direct 7(9):e528. https://doi.org/10.1002/pld3.528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019) Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett 17(4):1667–1692. https://doi.org/10.1007/s10311-019-00904-x

    Article  CAS  Google Scholar 

  71. Li Q, Zhu X, Xie Y, Liang J (2021) Antifungal properties and mechanisms of three volatile aldehydes (octanal, nonanal and decanal) on Aspergillus flavus. Grain Oil Sci Technol 4(3):131–140. https://doi.org/10.1016/j.gaost.2021.07.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Chemistry, College of Pure and Applied Sciences, Jomo Kenyatta University of Agriculture and Technology, and Norbrook Kenya Limited for providing their laboratory facilities to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, G.K.K, E.S.M, and P.G.K; methodology, G.K.K, E.S.M, and D.M.Z; validation, G.K.K, E.S.M, and W.W; formal analysis, G.K.K and D.M.Z; investigation, G.K.K, E.S.M, and D.M.Z; resources, G.K.K and W.W; data curation, G.K.K; writing—original draft preparation, G.K.K; writing—review and editing, E.S.M, P.G.K, and W.W; supervision, P.G.K and W.W; project administration, G.K.K. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gideon Kiprono Kirui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8223 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirui, G.K., Madivoli, E.S., Nzilu, D.M. et al. Antifungal activity of dialdehyde chitosan against Aspergillus brasiliensis and Candida albicans. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05448-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05448-x

Keywords

Navigation