Skip to main content
Log in

Green synthesis of silver nanoparticles from waste Vigna mungo plant and evaluation of its antioxidant and antibacterial activity

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The development of nanoparticles by using bioresources has become a good practice recently to avoid hazardous chemicals and processes. The present study reports the synthesis of silver nanoparticles by using an alkaline food additive prepared from Vigna mungo plant waste ash. This food additive called “Khar” is very popular in Assam, a North-Eastern state of India. This additive was used as the reducing and stabilizing agent for the synthesis of silver nanoparticles which were then characterized using TEM, XRD, UV–visible spectroscopy, DLS and zeta potential study, FESEM, and EDX. To study the antioxidant activity of the silver nanoparticle and plant waste ash extract, phytochemical analysis was done using standard methods. The quantitative phytochemical analysis revealed the presence of phenolic and flavonoid compounds in the aqueous extract of the Vigna mungo ash which was responsible for the strong antioxidant activity of both ash extracts (IC50 = 27.83 µg/mL) and silver nanoparticles (IC50 = 13.74 µg/mL). The agar well diffusion method was used for the analysis of the antibacterial activity of silver nanoparticles which showed remarkable antibacterial activity against both the gram-positive bacteria (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli) respectively. Thus, the study reveals the utility of a traditional food additive made of Assam in the synthesis of silver nanoparticle with notable antioxidant and antibacterial activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Nie P, Zhao Y, Xu H (2023) Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: a review. Ecotoxicol Environ Saf 253. https://doi.org/10.1016/j.ecoenv.2023.114636

  2. Tian S, Saravanan K, Mothana RA et al (2020) Anti-cancer activity of biosynthesized silver nanoparticles using Avicennia marina against A549 lung cancer cells through ROS/mitochondrial damages. Saudi J Biol Sci 27:3018–3024. https://doi.org/10.1016/j.sjbs.2020.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Soliman MKY, Abu-Elghait M, Salem SS, Azab MS (2022) Multifunctional properties of silver and gold nanoparticles synthesis by Fusarium pseudonygamai. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03507-9

    Article  Google Scholar 

  4. Baran Ayşe et al (2022) Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Front Bioeng Biotechnol 10:855136. https://doi.org/10.3389/fbioe.2022.855136

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ramazanli VN, Ahmadov IS (2022) “Synthesis of silver nanoparticles by using extract of olive leaves.” Adv Biol Earth Sci 7(3):238–244

    Google Scholar 

  6. Gunashova GY (2022) Synthesis of silver nanoparticles using a thermophilic bacterium strain isolated from the spring Yukhari istisu of the Kalbajar region (Azerbaijan). Adv Biol Earth Sci 7(3):198–204

    Google Scholar 

  7. Sharma A, Mittal R et al (2023) Sustainable approach for adsorptive removal of cationic and anionic dyes by titanium oxide nanoparticles synthesized biogenically using algal extract of spirulina. Nanotechnology 34:485301. https://doi.org/10.1088/1361-6528/acf37e

    Article  Google Scholar 

  8. Rodríguez-Félix F, Graciano-Verdugo AZ, Moreno-Vásquez MJ et al (2021) Trends in sustainable green synthesis of silver nanoparticles using agri-food waste extracts and their applications in health. J Nanomater 2022:37. https://doi.org/10.1155/2022/8874003

  9. Baran A, Baran MF, Keskin C et al (2021) Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities. J Nanomater 10:855136. https://doi.org/10.3389/fbioe.2022.855136

    Article  Google Scholar 

  10. Saha P, Kim BS (2022) Chapter 11: Plant extract and agricultural waste-mediated synthesis of silver nanoparticles and their biochemical activities. Green Synthesis of Silver Nanomaterials. Nanobiotechnology for Plant Protection: Elsevier, pp 285–315. https://doi.org/10.1016/B978-0-12-824508-8.00010-1

  11. Baran A et al (2021) Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities. J Nanomater 2021:1–10. https://doi.org/10.1155/2021/2270472

    Article  CAS  Google Scholar 

  12. Mythili R, Selvankumar T, Kamala-Kannan S et al (2018) Utilization of market vegetable waste for silver nanoparticle synthesis and its antibacterial activity. Mater Lett 225:101–104. https://doi.org/10.1016/j.matlet.2018.04.111

    Article  CAS  Google Scholar 

  13. Torres-Arellano S, Torres-Martinez LM, Luévano-Hipólito E et al (2023) Biologically mediated synthesis of CuO nanoparticles using corn COB (Zea mays) ash for photocatalytic hydrogen production. Mater Chem Phys 301:127640. https://doi.org/10.1016/J.MATCHEMPHYS.2023.127640

    Article  CAS  Google Scholar 

  14. Arockianathan PM, Rajalakshmi K, Nagappan1 P (2019) Proximate composition, phytochemicals, minerals and antioxidant activities of Vigna mungo L. seed coat. Bioinformation 15:579–585. https://doi.org/10.6026/97320630015579

  15. Mazumder D, Narzary A, Nath SK (2023) Chemical composition, characterization and antioxidant property of a food additive prepared from Vigna mungo (black gram lentils) plant waste. Indian J Nutr Diet 60:378–388. https://doi.org/10.21048/IJND.2023.60.3.33129

  16. Kalita D, Deb B (2004) Some folk medicines used by the Sonowal Kacharis tribe of the Brahmaputra valley, Assam. Natural Product Radiance 3:240–246. https://nopr.niscpr.res.in/bitstream/123456789/9438/1/NPR%203(4)%20240-246.pdf

  17. Hussain A, Khan MN et al (2010) In vitro screening of the leaves of Musa paradisiaca for anthelmintic activity. J Animal Plant Sci 20:5–8. https://www.researchgate.net/publication/225298346. Accessed Jul 2023

  18. Mohapatra D, Mishra S, Sutar N (2010) Banana and its by-product utilisation: an overview. J Sci and Ind Res 69:323–329

    CAS  Google Scholar 

  19. Varsha Kelkar Mane MRH (2014) Analysis of traditional food additive Kolakhar for its physico-chemical parameters and antimicrobial activity. J Food Process Technol 5:1000387–1000388. https://doi.org/10.4172/2157-7110.1000387

    Article  CAS  Google Scholar 

  20. Sarma PP, Barman K, Baruah PK (2023) Green synthesis of silver nanoparticles using Murraya koenigii leaf extract with efficient catalytic, antimicrobial, and sensing properties towards heavy metal ions. Inorg Chem Commun 152:110676. https://doi.org/10.1016/j.inoche.2023.110676

    Article  CAS  Google Scholar 

  21. Ramesh PS, Kokila T, Geetha D (2015) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim Acta A Mol Biomol Spectrosc 142:339–343. https://doi.org/10.1016/j.saa.2015.01.062

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275. https://doi.org/10.1016/j.jrras.2015.01.007

    Article  Google Scholar 

  23. Rodríguez-Félix F, López-Cota AG, Moreno-Vásquez MJ et al (2021) Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity. Heliyon 7:4. https://doi.org/10.1016/j.heliyon.2021.e06923

    Article  CAS  Google Scholar 

  24. Al-Karagoly H, Rhyaf A, Naji H et al (2022) Green synthesis, characterization, cytotoxicity, and antimicrobial activity of iron oxide nanoparticles using Nigella sativa seed extract. Green Processes Synth 11:254–265. https://doi.org/10.1515/gps-2022-0026

    Article  CAS  Google Scholar 

  25. Ezeonu CS, Ejikeme CM (2016) Qualitative and Quantitative Determination of Phytochemical Contents of Indigenous Nigerian Softwoods. New J of Sci 5601327. https://doi.org/10.1155/2016/5601327

  26. Konappa N, Udayashankar AC, Dhamodaran N et al (2021) Ameliorated antibacterial and antioxidant properties by Trichoderma harzianum mediated green synthesis of silver nanoparticles. Biomolecules 11:4. https://doi.org/10.3390/biom11040535

    Article  CAS  Google Scholar 

  27. Sánchez-Moreno C (2002) Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int 8:121–137. https://doi.org/10.1106/108201302026770

    Article  CAS  Google Scholar 

  28. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  PubMed  Google Scholar 

  29. Aritonang HF, Koleangan H, Wuntu AD (2019) Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int J Microbiol 2019:1–8. https://doi.org/10.1155/2019/8642303

    Article  CAS  Google Scholar 

  30. Jaast S, Grewal A (2021) Green synthesis of silver nanoparticles, characterization and evaluation of their photocatalytic dye degradation activity, Current Res in Green Sustain Chem 4:100195. https://doi.org/10.1016/j.crgsc.2021.100195

  31. Lou Z, Huang B, Wang P et al (2011) The synthesis of the near-spherical AgCl crystal for visible light photocatalytic applications. Dalton Trans 40:4104–4110. https://doi.org/10.1039/c0dt01795g

    Article  CAS  PubMed  Google Scholar 

  32. Alharbi NS, Alsubhi NS (2022) Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica. J Radiat Res Appl Sci 15:335–345. https://doi.org/10.1016/j.jrras.2022.08.009

    Article  CAS  Google Scholar 

  33. Jaffar SS, Saallah S, Misson M et al (2023) Green synthesis of flower-like carrageenan-silver nanoparticles and elucidation of its physicochemical and antibacterial properties. Molecules 28:2. https://doi.org/10.3390/molecules28020907

    Article  CAS  Google Scholar 

  34. Sandulovici RC, Carmen-Marinela M, Grigoroiu A et al (2023) The physicochemical and antimicrobial properties of silver/gold nanoparticles obtained by “green synthesis” from willow bark and their formulations as potential innovative pharmaceutical substances. Pharmaceuticals 16:1. https://doi.org/10.3390/ph16010048

    Article  CAS  Google Scholar 

  35. Moreno-Vargas JM, Echeverry-Cardona LM, Moreno-Montoya LE, Restrepo-Parra E (2023) Evaluation of antifungal activity of Ag nanoparticles synthetized by green chemistry against Fusarium solani and Rhizopus stolonifera. Nanomaterials 13:3. https://doi.org/10.3390/nano13030548

    Article  CAS  Google Scholar 

  36. Widatalla HA, Yassin LF, Alrasheid AA et al (2022) Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv 4:911–915. https://doi.org/10.1039/d1na00509j

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Chandraker SK, Lal M, Shukla R et al (2019) Colorimetric sensing of Fe3+ and Hg2+ and photocatalytic activity of green synthesized silver nanoparticles from the leaf extract of: Sonchus arvensis L. New J Chem 43:18175–18183. https://doi.org/10.1039/c9nj01338e

    Article  CAS  Google Scholar 

  38. Kanniah P, Chelliah P, Thangapandi JR et al (2021) Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. Int J Biol Macromol 189:18–33. https://doi.org/10.1016/j.ijbiomac.2021.08.056

    Article  CAS  PubMed  Google Scholar 

  39. Clayton KN, Salameh JW, Wereley ST, Kinzer-Ursem TL (2016) Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics 10:054107. https://doi.org/10.1063/1.4962992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alzubaidi AK, Al-Kaabi WJ, Al AA et al (2023) Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Appl Sci (Switzerland) 13:2182. https://doi.org/10.3390/app13042182

    Article  CAS  Google Scholar 

  41. Mittal R, Sharma S et al (2023) Removal of chromium (vi) using spirulina assisted mesoporous iron oxide nanoparticles. Ing Chm Communications 154:110881. https://doi.org/10.1016/j.inoche.2023.110881

    Article  CAS  Google Scholar 

  42. Das P, Dutta T, Manna S et al (2022) Facile green synthesis of non-genotoxic, non-hemolytic organometallic silver nanoparticles using extract of crushed, wasted, and spent Humulus lupulus (hops): characterization, anti-bacterial, and anti-cancer studies. Environ Res 204:111962. https://doi.org/10.1016/j.envres.2021.111962

  43. Riaz M, Sharafat U, Zahid N et al (2022) Synthesis of biogenic silver nanocatalyst and their antibacterial and organic pollutants reduction ability. ACS Omega 7:14723–14734. https://doi.org/10.1021/acsomega.1c07365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hemlata MPR, Singh AP, Tejavath KK (2020) Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 5:5520–5528. https://doi.org/10.1021/acsomega.0c00155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aryan R, Mehata MS (2021) Green synthesis of silver nanoparticles using Kalanchoe pinnata leaves (life plant) and their antibacterial and photocatalytic activities. Chem Phys Lett 778:138760. https://doi.org/10.1016/j.cplett.2021.138760

    Article  CAS  Google Scholar 

  46. Khane Y, Benouis K, Albukhaty S et al (2022) Green synthesis of silver nanoparticles using aqueous citrus limon zest extract: characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials 12:12. https://doi.org/10.3390/nano12122013

    Article  CAS  Google Scholar 

  47. Pallavi SS, Rudayni HA, Bepari A et al (2022) Green synthesis of silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi J Biol Sci 29:228–238. https://doi.org/10.1016/j.sjbs.2021.08.084

    Article  CAS  Google Scholar 

  48. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84. https://doi.org/10.1007/s00449-008-0224-6

    Article  CAS  PubMed  Google Scholar 

  49. Rautela A, Rani J, Debnath (Das) M (2019) Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol 10:1-10. https://doi.org/10.1186/s40543-018-0163-z

  50. Aboutorabi SN, Nasiriboroumand M, Mohammadi P et al (2018) Biosynthesis of silver nanoparticles using safflower flower: structural characterization, and its antibacterial activity on applied wool fabric. J Inorg Organomet Polym Mater 28:2525–2532. https://doi.org/10.1007/s10904-018-0925-5

    Article  CAS  Google Scholar 

  51. Jyoti K, Baunthiyal M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci 9:217–227. https://doi.org/10.1016/j.jrras.2015.10.002

    Article  CAS  Google Scholar 

  52. Amini SM, Akbari A (2019) Metal nanoparticles synthesis through natural phenolic acids. Natl Libr Med 13:771–777. https://doi.org/10.1049/iet-nbt.2018.5386

    Article  Google Scholar 

  53. Yousefbeyk F, Dabirian S, Ghanbarzadeh S et al (2022) Green synthesis of silver nanoparticles from Stachys by zantina K. Koch: characterization, antioxidant, antibacterial, and cytotoxic activity. Part Sci Technol 40:219–232. https://doi.org/10.1080/02726351.2021.1930302

    Article  CAS  Google Scholar 

  54. Rafique M, Sadaf I, Rafique MS, Tahir MB (2017) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol 45:1272–1291. https://doi.org/10.1016/j.msec.2019.02.059

    Article  CAS  PubMed  Google Scholar 

  55. Rafique M, Sadaf I, Tahir MB et al (2019) Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Mater Sci Eng, C 99:1313–1324. https://doi.org/10.1016/j.msec.2019.02.059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sophisticated Analytical Instrumentation Centre (SAIC), Institute of Advanced Study in Science and Technology (IASST), Guwahati, DST, Government of India, for TEM analysis and Dept. of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India for XRD, FT-IR, ZETA, and DLS analyses.

Author information

Authors and Affiliations

Authors

Contributions

Deepjyoti Mazumder: investigation, formal analysis, visualization, writing—original draft; Rishi Mittal: investigation, formal analysis; Suresh Kumar Nath: conceptualization, writing—original draft, methodology, validation, supervision, visualization.

Corresponding author

Correspondence to Suresh K. Nath.

Ethics declarations

Ethics approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumder, D., Mittal, R. & Nath, S.K. Green synthesis of silver nanoparticles from waste Vigna mungo plant and evaluation of its antioxidant and antibacterial activity. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05375-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05375-x

Keywords

Navigation