Skip to main content
Log in

Exploration of the chemical characteristics and bioactive and antioxidant potential of tucumã (Astrocaryum vulgare), peach palm (Bactris gasipaes), and bacupari (Garcinia gardneriana) native Brazilian fruits

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Brazil has native fruits in its flora with high nutritional, mineral, bioactive, and antioxidant potential. Therefore, this work aimed to study the biochemical composition, bioactive potential, and the presence of antinutritional compounds in tucumã, peach palm, and bacupari fruits. Analyses of total carotenoids, vitamin C, total phenolics, antioxidant activity, antinutritional compounds, mineral profiles, carbohydrates and organic acids profiles, and individual phenolics were performed. The results showed that tucumã, peach palm, and bacupari are sources of vitamin C (108.31, 206.22, and 163.49 mg ascorbic acid 100 g−1 sample), carotenoids (2.55, 3.47, and 0.14 mg carotenoids 100 g−1 sample), and high antioxidant potential by the FRAP (105.96, 41.61, and 55.54 μM ferrous sulfate g−1 pulp), and ABTS (591.14, 105.03, and 46.59 μM Trolox g−1 pulp) methods, respectively. The results obtained on antinutritional compounds demonstrated that tucumã had a tannin content of 0.26 mg tannic acid 100 g−1; on the other hand, bacupari showed positive results for trypsin inhibitors (1.02 TIU mg−1 sample), peach palm did not show positive results for any of the applied antinutritional tests. All the fruits stood out for their high potassium and magnesium content (70.0 and 22.50 mg L−1, 58.0 and 4.90 mg L−1, 99.75 and 16.90 mg L−1 for tucumã, peach palm, and bacupari, respectively). The main acids identified in the tucumã and peach palm samples were oleic acid (58.51, and 54.23 %) and palmitic acid (30.63, and 35.81 %), respectively. Among the individual phenolics, the samples proved to be rich in catechin, gallic acid, rutin, and chlorogenic acid. It has been reported that these phenolics are sources for the maintenance of several crucial biological functions in our organisms, acting as antimicrobials and antitumor and reducing the incidence of neurodegenerative and cardiovascular diseases. The work demonstrated the potential of these fruits as a source of compounds with high added value for application in food and pharmaceutical products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The article material presents all data relevant to this study.

References

  1. Bortolotto IM, Hiane PA, Ishii IH et al (2017) A knowledge network to promote the use and valorization of wild food plants in the Pantanal and Cerrado, Brazil. Reg Environ Chang 17:1329–1341. https://doi.org/10.1007/s10113-016-1088-y

    Article  Google Scholar 

  2. Ding Z, Ge Y, Sar T et al (2023) Valorization of tropical fruits waste for production of commercial biorefinery products – a review. Bioresour Technol 374:128793. https://doi.org/10.1016/j.biortech.2023.128793

    Article  Google Scholar 

  3. Miranda P, Morais R, Sousa H et al (2023) Effects of pectinase treatment on the optimization and extraction of pigments from bacupari, tucumã, and peach palm using response surface methodology. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20230124

  4. Morais RA, Teixeira GL, Ferreira SRS et al (2022) Nutritional composition and bioactive compounds of native brazilian fruits of the arecaceae family and its potential applications for health promotion. Nutrients 14:4009. https://doi.org/10.3390/nu14194009

    Article  Google Scholar 

  5. Noronha Matos KA, Praia Lima D, Pereira Barbosa AP et al (2019) Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chem 272:216–221. https://doi.org/10.1016/j.foodchem.2018.08.053

    Article  Google Scholar 

  6. Carneiro ABA, Pinto EJS, Ribeiro IF et al (2017) Efeito da Astrocaryum aculeatum (Tucumã) na toxicidade da Doxorrubicina: modelo experimental in vivo. Acta Paulista de Enfermagem 30:233–239. https://doi.org/10.1590/1982-0194201700036

    Article  Google Scholar 

  7. Sagrillo MR, Garcia LFM, de Souza Filho OC et al (2015) Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chem 173:741–748. https://doi.org/10.1016/j.foodchem.2014.10.067

    Article  Google Scholar 

  8. Santos MMR, Fernandes DS, Cândido CJ et al (2018) Physical-chemical, nutritional and antioxidant properties of tucumã (Astrocaryum huaimi Mart.) fruits. Semin Cienc Agrar 39:1517. https://doi.org/10.5433/1679-0359.2018v39n4p1517

    Article  Google Scholar 

  9. Neri-Numa IA, Soriano Sancho RA, Pereira APA, Pastore GM (2018) Small Brazilian wild fruits: nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res Int 103:345–360. https://doi.org/10.1016/j.foodres.2017.10.053

    Article  Google Scholar 

  10. Basto GJ, Carvalho CWP, Soares AG et al (2016) Physicochemical properties and carotenoid content of extruded and non-extruded corn and peach palm (Bactris gasipaes, Kunth). LWT- Food Sci Technol 69:312–318. https://doi.org/10.1016/j.lwt.2015.12.065

    Article  Google Scholar 

  11. Demenciano SDC, Silva MCBLE, Alexandrino CAF et al (2020) Antiproliferative activity and antioxidant potential of extracts of Garcinia gardneriana. Molecules 25:3201. https://doi.org/10.3390/molecules25143201

    Article  Google Scholar 

  12. de Castro Moreira ME, Natal DIG, Toledo RCL et al (2017) Bacupari peel extracts (Garcinia brasiliensis) reduce high-fat diet-induced obesity in rats. J Funct Foods 29:143–153. https://doi.org/10.1016/j.jff.2016.11.001

    Article  Google Scholar 

  13. AOAC - Association of Official Analytical Chemistry (2012) Official methods of analysis, 19th

  14. Warthesen JJ, Kramer PL (1979) Analysis of sugars in milk and ice cream by high pressure liquid chromatography. J Food Sci 44:626–627. https://doi.org/10.1111/j.1365-2621.1979.tb03853.x

    Article  Google Scholar 

  15. dos Santos Lima M, Dutra MDCP, Toaldo IM et al (2015) Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration. Food Chem 188:384–392. https://doi.org/10.1016/j.foodchem.2015.04.014

    Article  Google Scholar 

  16. Araújo JM (2011) Química de alimentos–teoria e prática, 3rd edn. Viçosa

    Google Scholar 

  17. Arcon RP (1979) Methods in Enzimology, 1th, 19:226–234

  18. Latta M, Eskin M (1980) A simple and rapid colorimetric method for phytate determination. J Agric Food Chem 28:1313–1315. https://doi.org/10.1021/jf60232a049

    Article  Google Scholar 

  19. Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I.—the quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68. https://doi.org/10.1002/jsfa.2740100110

    Article  Google Scholar 

  20. Rodrigues AM, Darnet S, Silva LH (2010) Fatty acid profiles and tocopherol contents of buriti (Mauritia flexuosa), patawa (Oenocarpus bataua), tucuma (Astrocaryum vulgare), mari (Poraqueiba paraensis) and inaja (Maximiliana maripa) fruits. J Braz Chem Soc 21:2000–2004. https://doi.org/10.1590/S0103-50532010001000028

    Article  Google Scholar 

  21. Higby WK (1962) A simplified method for determination of some aspects of the carotenoid distribution in natural and carotene-fortified orange juice. J Food Sci 27:42–49. https://doi.org/10.1111/j.1365-2621.1962.tb00055.x

    Article  Google Scholar 

  22. Strohecker R, Henning HM (1967) Vitamin analysis: Proven methods. In: Madrid: Paz Montalvo, 428

  23. Maria do Socorro MR, Alves RE, de Brito ES et al (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121:996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

    Article  Google Scholar 

  24. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158. https://doi.org/10.5344/ajev.1965.16.3.144

    Article  Google Scholar 

  25. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT- Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  26. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  Google Scholar 

  27. Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  28. Santos M, Mamede R, Rufino M et al (2015) Amazonian native palm fruits as sources of antioxidant bioactive compounds. Antioxidants 4:591–602. https://doi.org/10.3390/antiox4030591

    Article  Google Scholar 

  29. Escriche I, Juan-Borrás M (2018) Standardizing the analysis of phenolic profile in propolis. Food Res Int 106:834–841. https://doi.org/10.1016/j.foodres.2018.01.055

    Article  Google Scholar 

  30. Carvalho DU, Cruz MA, Colombo RC et al (2020) Determination of organic acids and carbohydrates in ‘Salustiana’ orange fruit from different rootstocks. Brazilian J Food Technol 23. https://doi.org/10.1590/1981-6723.32918

  31. Mwaurah PW, Kumar S, Kumar N et al (2020) Physicochemical characteristics, bioactive compounds and industrial applications of mango kernel and its products: a review. Compr Rev Food Sci Food Saf 19:2421–2446. https://doi.org/10.1111/1541-4337.12598

    Article  Google Scholar 

  32. Tapia MS, Alzamora SM, Chirife J (2020) Effects of water activity (a w) on microbial stability as a hurdle in food preservation. In: Water Activity in Foods. Wiley, pp 323–355

    Chapter  Google Scholar 

  33. Tome AC, Mársico ET, da Silva FA et al (2019) Achachairú (Garcinia humilis): chemical characterization, antioxidant activity and mineral profile. J Food Measurement Characteriz 13:213–221. https://doi.org/10.1007/s11694-018-9934-x

    Article  Google Scholar 

  34. Paull RE, Duarte O (2011) Tropical fruits: CAB Intrnational, London, UK, 1:400

  35. Egea MB, Pereira-Netto AB (2019) Bioactive compound-rich, virtually unknown, edible fruits from the Atlantic rainforest: changes in antioxidant activity and related bioactive compounds during ripening. Eur Food Res Technol 245:1081–1093. https://doi.org/10.1007/s00217-018-3208-z

    Article  Google Scholar 

  36. Lemos DM, Rocha APT, de Gouveia JPG et al (2019) Elaboração e caracterização de geleia prebiótica mista de jabuticaba e acerola. Brazilian J Food Technol 22. https://doi.org/10.1590/1981-6723.09818

  37. Sarmento JDA, de Morais PD, de Souza FI, de Miranda MA (2015) Physical-chemical characteristics and antioxidant potential of seed and pulp of Ximenia americana L. from the semiarid region of Brazil. Afr J Biotechnol 14:1743–1752. https://doi.org/10.5897/AJB2015.14452

    Article  Google Scholar 

  38. Goldoni J, Giacobbo CL, Galon L et al (2019) Physicochemical characterization of fruits of Campomanesia guazumifolia (Cambess.) O. Berg (Myrtaceae). Acta Sci Biol Sci 41:e45923. https://doi.org/10.4025/actascibiolsci.v41i1.45923

    Article  Google Scholar 

  39. Chinonyerem A, Obioha O, Blessing A (2017) Garcinia kola fruit pulp: evaluation of it’s nutrient, phytochemical and physicochemical properties. J Appl Life Sci Int 13:1–10. https://doi.org/10.9734/JALSI/2017/33558

    Article  Google Scholar 

  40. Virgolin LB, Seixas FRF, Janzantti NS (2017) Composition, content of bioactive compounds, and antioxidant activity of fruit pulps from the Brazilian Amazon biome. Pesqui Agropecu Bras 52:933–941. https://doi.org/10.1590/s0100-204x2017001000013

    Article  Google Scholar 

  41. Brazil (2005) National Health Surveillance Agency, Resolution-RDC no. 272, of September 22, 2005. Brazil. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0272_22_09_2005.html

  42. Brazil (2012) National Health Surveillance Agency, Brazil

  43. Punia Bangar S, Suri S, Trif M, Ozogul F (2022) Organic acids production from lactic acid bacteria: a preservation approach. Food Biosci 46:101615. https://doi.org/10.1016/j.fbio.2022.101615

    Article  Google Scholar 

  44. Canuto GAB, Xavier AAO, Neves LC et al (2010) Caracterização físico-química de polpas de frutos da Amazônia e sua correlação com a atividade anti-radical livre. Rev Bras Frutic 32:1196–1205. https://doi.org/10.1590/S0100-29452010005000122

    Article  Google Scholar 

  45. FDA - Food and Drug Administration (2020) Daily value and percent daily value: changes on the new nutrition and supplement facts labels. In: http://www.fda.gov/NewNutritionFactsLabel

  46. Santos OV, Soares SD, Dias PCS et al (2022) White peach palm (pupunha) a new Bactris gasipaes Kunt variety from the Amazon: nutritional composition, bioactive lipid profile, thermogravimetric and morphological characteristics. J Food Compos Anal 112:104684. https://doi.org/10.1016/j.jfca.2022.104684

    Article  Google Scholar 

  47. da Silva EP, Boas EVDBV, Rodrigues LJ, Siqueira HH (2009) Caracterização física, química e fisiológica de gabiroba (Campomanesia pubescens) durante o desenvolvimento. Cienc Tecnol Aliment 29:803–809. https://doi.org/10.1590/S0101-20612009000400016

    Article  Google Scholar 

  48. Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66:22–33. https://doi.org/10.1159/000371618

    Article  Google Scholar 

  49. World Health Organization (1998) Quality control methods for medicinal plant materials. World Health Organization, 1th

  50. Pol K, de Graaf K, Diepeveen-de Bruin M et al (2020) The effect of replacing sucrose with L-arabinose in drinks and cereal foods on blood glucose and plasma insulin responses in healthy adults. J Funct Foods 73:104114. https://doi.org/10.1016/j.jff.2020.104114

    Article  Google Scholar 

  51. Yoon LW, Ngoh GC, Chua ASM et al (2019) Process intensification of cellulase and bioethanol production from sugarcane bagasse via an integrated saccharification and fermentation process. Chem Eng Process Process Intensif 142:107528. https://doi.org/10.1016/j.cep.2019.107528

    Article  Google Scholar 

  52. DePace NL, Colombo J (2019) About the program. In: Clinical autonomic and mitochondrial disorders. Springer International Publishing, Cham, pp 5–35

    Chapter  Google Scholar 

  53. Samtiya M, Aluko RE, Dhewa T, Moreno-Rojas JM (2021) Potential health benefits of plant food-derived bioactive components: an overview. Foods 10:839. https://doi.org/10.3390/foods10040839

    Article  Google Scholar 

  54. Mora MR, Dando R (2021) The sensory properties and metabolic impact of natural and synthetic sweeteners. Compr Rev Food Sci Food Saf 20:1554–1583. https://doi.org/10.1111/1541-4337.12703

    Article  Google Scholar 

  55. Quitmann H, Fan R, Czermak P (2014) Acidic Organic compounds in beverage, food, and feed production. In: Zorn, H., Czermak, P. (eds) Biotechnology of Food and Feed Additives. Advances in Biochemical Engineering/Biotechnology, vol 143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_262

  56. de Jesús Ornelas-Paz J, Yahia EM, Ramírez-Bustamante N et al (2013) Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening. Food Chem 138:372–381. https://doi.org/10.1016/j.foodchem.2012.11.006

    Article  Google Scholar 

  57. Bartnik M, Facey PC (2017) Glycosides. In: Pharmacognosy. Elsevier, pp 101–161

    Chapter  Google Scholar 

  58. de Jesus Benevides CM, Souza MV, Souza RDB, Lopes MV (2015) Fatores antinutricionais em alimentos: revisão. Segurança Alimentar e Nutricional 18:67 https://doi.org/10.20396/san.v18i2.8634679

    Article  Google Scholar 

  59. Rodríguez-Solana R, Romano A, Moreno-Rojas JM (2021) Carob pulp: a nutritional and functional by-product worldwide spread in the formulation of different food products and beverages. A Review Processes 9:1146. https://doi.org/10.3390/pr9071146

    Article  Google Scholar 

  60. Awuah GB, Ramaswamy HS, Economides A (2007) Thermal processing and quality: Principles and overview. Chem Eng Process Process Intensif 46:584–602. https://doi.org/10.1016/j.cep.2006.08.004

    Article  Google Scholar 

  61. Ramalho HF, Suarez PA (2013) The chemistry of oils and fats and their extraction and refining processes. Revista Virtual de Química 5:2–15. https://doi.org/10.5935/1984-6835.20130002

  62. FAO - Food and Agriculture Organization of the United Nations (2008) Fats and fatty acids in human nutrition, Geneva

  63. Molska M, Reguła J, Grygier A et al (2022) Effect of the addition of buckwheat sprouts modified with the addition of Saccharomyces cerevisiae var. boulardii to an atherogenic diet on the metabolism of sterols, stanols and fatty acids in rats. Molecules 27:4394. https://doi.org/10.3390/molecules27144394

    Article  Google Scholar 

  64. Dimou C, Karantonis HC, Skalkos D, Koutelidakis AE (2019) Valorization of fruits by-products to unconventional sources of additives, oil, biomolecules and innovative functional foods. Curr Pharm Biotechnol 20:776–786. https://doi.org/10.2174/1389201020666190405181537

    Article  Google Scholar 

  65. Giordano E, Visioli F (2014) Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions. Prostaglandins Leukot Essent Fatty Acids 90:1–4. https://doi.org/10.1016/j.plefa.2013.11.002

    Article  Google Scholar 

  66. Moreira-Araújo RSDR, Barros NVDA, Porto RGCL et al (2019) Bioactive compounds and antioxidant activity three fruit species from the Brazilian Cerrado. Rev Bras Frutic 41. https://doi.org/10.1590/0100-29452019011

  67. Kimura M, Kobori CN, Rodriguez-Amaya DB, Nestel P (2007) Screening and HPLC methods for carotenoids in sweetpotato, cassava and maize for plant breeding trials. Food Chem 100:1734–1746. https://doi.org/10.1016/j.foodchem.2005.10.020

    Article  Google Scholar 

  68. Marhuenda-Muñoz M, Hurtado-Barroso S, Tresserra-Rimbau A, Lamuela-Raventós RM (2019) A review of factors that affect carotenoid concentrations in human plasma: differences between Mediterranean and Northern diets. Eur J Clin Nutr 72:18–25. https://doi.org/10.1038/s41430-018-0305-9

    Article  Google Scholar 

  69. Caritá AC, Fonseca-Santos B, Shultz JD et al (2020) Vitamin C: one compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine 24:102117. https://doi.org/10.1016/j.nano.2019.102117

    Article  Google Scholar 

  70. Vasco C, Ruales J, Kamal-Eldin A (2008) Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem 111:816–823. https://doi.org/10.1016/j.foodchem.2008.04.054

    Article  Google Scholar 

  71. Yu M, Gouvinhas I, Rocha J, Barros AIRNA (2021) Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci Rep 11:10041. https://doi.org/10.1038/s41598-021-89437-4

    Article  Google Scholar 

  72. Albuquerque BR, Heleno SA, Oliveira MBPP et al (2021) Phenolic compounds: current industrial applications, limitations and future challenges. Food Funct 12:14–29. https://doi.org/10.1039/D0FO02324H

    Article  Google Scholar 

  73. Gadkari PV, Balaraman M (2015) Catechins: sources, extraction and encapsulation: a review. Food Bioprod Process 93:122–138. https://doi.org/10.1016/j.fbp.2013.12.004

    Article  Google Scholar 

  74. Palafox-Carlos H, Yahia EM, González-Aguilar GA (2012) Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo) fruit by HPLC–DAD–MS/MS-ESI and their individual contribution to the antioxidant activity during ripening. Food Chem 135:105–111. https://doi.org/10.1016/j.foodchem.2012.04.103

    Article  Google Scholar 

  75. Heo HJ, Kim YJ, Chung D, Kim D-O (2007) Antioxidant capacities of individual and combined phenolics in a model system. Food Chem 104:87–92. https://doi.org/10.1016/j.foodchem.2006.11.002

    Article  Google Scholar 

  76. Pinelo M, Manzocco L, Nuñez MJ, Nicoli MC (2004) Interaction among phenols in food fortification: negative synergism on antioxidant capacity. J Agric Food Chem 52:1177–1180. https://doi.org/10.1021/jf0350515

    Article  Google Scholar 

Download references

Funding

G.A.S. Martins received a grant and thanks the CAPES/Brazil no: 88881.200497/2018-01, PROCAD-AM 1707/2018. G.A.S. Martins received funding and thanks to the CNPq Edital de Produtividade em Desenvolvimento Tecnológico e Extensão Inovadora no: 304505/2022-6, and CAPES - Process no: 23038.000878/2021-56, Edital CAPES no 018/2020 – Programa de Desenvolvimento da Pós-Graduação- Parcerias Estratégicas nos Estados.

Author information

Authors and Affiliations

Authors

Contributions

HMdSS: conceptualization, methodology, validation, formal analysis, original draft, investigation; GFL: methodology, validation, formal analysis; LdSG: methodology, validation, formal analysis; BCBdF: validation, formal analysis; PMG: resources, supervision, project administration; SVB: resources, supervision, project administration; RAM: methodology, validation, original draft, investigation, review, and editing; GAdSM: conceptualization, resources, supervision, project administration, review and editing

Corresponding author

Correspondence to Rômulo Alves Morais.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Sousa, H.M., Leal, G.F., da Silva Gualberto, L. et al. Exploration of the chemical characteristics and bioactive and antioxidant potential of tucumã (Astrocaryum vulgare), peach palm (Bactris gasipaes), and bacupari (Garcinia gardneriana) native Brazilian fruits. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-05145-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-05145-1

Keywords

Navigation