Skip to main content
Log in

Plant extract-mediated synthesis of Ag/Ag2O nanoparticles using Olea europaea leaf extract: assessing antioxidant, antibacterial, and toxicological properties

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Plant extract-mediated synthesis has the advantage of being simple, cost-effective, and environmentally friendly. In this study, we synthesized silver/silver oxide nanoparticles (Ag/Ag2O NPs) using an aqueous Olea Europaea leaf extract as a reducing and stabilizing agent. The Ag/Ag2O NPs were synthesized and the plant extract was processed using only pure water, without the use of any harmful reagents or organic solvents. The synthesized Ag/Ag2O NPs exhibited a spherical morphology with a particle size of 45 nm, and an average crystallite size of 24 nm for the Ag phase and 26 nm for the Ag2O phase. The optical band gap energy of the Ag/Ag2O NPs was calculated to be 2.23 eV. The antimicrobial and antioxidant activities of the Ag/Ag2O NPs were then investigated. The Ag/Ag2O NPs exhibited potent antimicrobial activity against Escherichia coli (E.coli), Staphylococcus aureus (Sa), and Pseudomonas aeruginosa (Pa) at concentrations of 50–200 μg/mL, with the highest activity observed at a concentration of 200 μg/mL, respectively. Moreover, Ag/Ag2O NPs at a concentration of 2.5 mg/kg body weight during a 28-day study in adult male rats (10–11 weeks old) showed remarkable antioxidant activity and no acute toxicity when administered at different doses of Ag/Ag2O NPs (2.5 and 5 mg/kg body weight). The most effective antioxidant exhibited an IC50 value of 7.043 ± 1.352 µg/ml, a FRAP value of 445.34 ± 7.90 mg E FeSO4/g NPs, and a TAC value of 67.72 ± 2.38 mg E GA/g NPs, indicating it’s ferric reducing antioxidant power (FRAP) and total antioxidant capacity (TAC). Accordingly, the developed Ag/Ag2O NPs can be used as chemotherapeutic drug carriers for antioxidant and antibacterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Gupta P, Rai N, Verma A, Saikia D, Singh SP, Kumar R, Singh SK, Kumar D, Gautam V (2022) Green-based approach to synthesize silver nanoparticles using the fungal endophyte penicillium oxalicum and their antimicrobial, antioxidant, and in vitro anticancer potential. ACS Omega 7(50):46653–46673. https://doi.org/10.1021/acsomega.2c05605

    Article  Google Scholar 

  2. Djamila B, Eddine LS, Abderrhmane B, Nassiba A, Barhoum A (2022) In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02743-3

    Article  Google Scholar 

  3. Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J (2022) Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale 14(7):2534–2571. https://doi.org/10.1039/D1NR08144F

    Article  Google Scholar 

  4. Said MM, Rehan M, El-Sheikh SM, Zahran MK, Abdel-Aziz MS, Bechelany M, Barhoum A (2021) Multifunctional hydroxyapatite/silver nanoparticles/cotton gauze for antimicrobial and biomedical applications. Nanomaterials 11(2). https://doi.org/10.3390/nano11020429

  5. Soliman MKY, Salem SS, Abu-Elghait M, Azab MS (2023) Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Appl Biochem Biotechnol 195(2):1158–1183. https://doi.org/10.1007/s12010-022-04199-7

    Article  Google Scholar 

  6. Simon S, Sibuyi NR, Fadaka AO, Meyer S, Josephs J, Onani MO, Meyer M, Madiehe AM (2022) Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines 10(11). https://doi.org/10.3390/biomedicines10112792

  7. Jaswal T, Gupta J (2023) A review on the toxicity of silver nanoparticles on human health. Mater Today: Proc 81:859–863. https://doi.org/10.1016/j.matpr.2021.04.266

    Article  Google Scholar 

  8. Ashique S, Upadhyay A, Hussain A, Bag S, Chaterjee D, Rihan M, Mishra N, Bhatt S, Puri V, Sharma A, Prasher P, Singh SK, Chellappan DK, Gupta G, Dua K (2022) Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J Drug Delivery Sci Technol 77:103876. https://doi.org/10.1016/j.jddst.2022.103876

    Article  Google Scholar 

  9. Lee SH, Jun B-H (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20(4):865

    Article  Google Scholar 

  10. Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J (2022) Biological synthesis of silver nanoparticles and prospects in plant disease management. Molecules 27(15). https://doi.org/10.3390/molecules27154754

  11. Li R, Chen Z, Ren N, Wang Y, Wang Y, Yu F (2019) Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care. J Photochem Photobiol B 199:111593. https://doi.org/10.1016/j.jphotobiol.2019.111593

    Article  Google Scholar 

  12. Danish MSS, Estrella-Pajulas LL, Alemaida IM, Grilli ML, Mikhaylov A, Senjyu T (2022) Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications. Metals 12(5):769

    Article  Google Scholar 

  13. Dara PK, Mahadevan R, Digita PA, Visnuvinayagam S, Kumar LRG, Mathew S, Ravishankar CN, Anandan R (2020) Synthesis and biochemical characterization of silver nanoparticles grafted chitosan (Chi-Ag-NPs): in vitro studies on antioxidant and antibacterial applications. SN Appl Sci 2(4):665. https://doi.org/10.1007/s42452-020-2261-y

    Article  Google Scholar 

  14. Akter M, Sikder MT, Rahman MM, Ullah A, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16. https://doi.org/10.1016/j.jare.2017.10.008

    Article  Google Scholar 

  15. Elyamny S, Eltarahony M, Abu-Serie M, Nabil MM, Kashyout AE-HB (2021) One-pot fabrication of Ag @Ag2O core–shell nanostructures for biosafe antimicrobial and antibiofilm applications. Sci Rep 11(1):22543. https://doi.org/10.1038/s41598-021-01687-4

    Article  Google Scholar 

  16. Ozdal M, Gurkok S (2022) Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10(2):115–129. https://doi.org/10.5599/admet.1172

    Article  Google Scholar 

  17. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 15:2555–2562. https://doi.org/10.2147/ijn.s246764

    Article  Google Scholar 

  18. Kumar B, Smita K, Cumbal L, Debut A (2016) Ficus carica (Fig) fruit mediated green synthesis of silver nanoparticles and its antioxidant activity: a comparison of thermal and ultrasonication approach. BioNanoScience 6(1):15–21. https://doi.org/10.1007/s12668-016-0193-1

    Article  Google Scholar 

  19. Singh JP, Kaur A, Singh N, Nim L, Shevkani K, Kaur H, Arora DS (2016) In vitro antioxidant and antimicrobial properties of jambolan (Syzygium cumini) fruit polyphenols. LWT Food Sci Technol 65:1025–1030. https://doi.org/10.1016/j.lwt.2015.09.038

    Article  Google Scholar 

  20. Asadi S, Ahmadiani A, Esmaeili MA, Sonboli A, Ansari N, Khodagholi F (2010) In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: a comparative study. Food Chem Toxicol 48(5):1341–1349. https://doi.org/10.1016/j.fct.2010.02.035

    Article  Google Scholar 

  21. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    Article  Google Scholar 

  22. Della Rosa RJ, Stannard JN (1964) Acute toxicity as a function of route of administration. Radiat Res Suppl 5:205–215. https://doi.org/10.2307/3583491

    Article  Google Scholar 

  23. Trang NLN, Hoang V-T, Dinh NX, Tam LT, Le VP, Linh DT, Cuong DM, Khi NT, Anh NH, Nhung PT, Le A-T (2021) Novel eco-friendly synthesis of biosilver nanoparticles as a colorimetric probe for highly selective detection of Fe (III) ions in aqueous solution. J Nanomater 2021:5527519. https://doi.org/10.1155/2021/5527519

    Article  Google Scholar 

  24. Laouini SE, Bouafia A, Soldatov AV, Algarni H, Tedjani ML, Ali GAM, Barhoum A (2021) Green synthesized of Ag/Ag(2)O nanoparticles using aqueous leaves extracts of phoenix dactylifera L. and their azo dye photodegradation. Membranes (Basel) 11(7). https://doi.org/10.3390/membranes11070468

  25. Laouini SE, Bouafia A, Soldatov AV, Algarni H, Tedjani ML, Ali GAM, Barhoum A (2021) Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of phoenix dactylifera L. and their azo dye photodegradation. Membranes 11(7):468

    Article  Google Scholar 

  26. Terea H, Selloum D, Rebiai A, Bouafia A, Ben Mya O (2023) Preparation and characterization of cellulose/ZnO nanoparticles extracted from peanut shells: effects on antibacterial and antifungal activities. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-03959-7

    Article  Google Scholar 

  27. Joesna G, Saravanan P, Ferin RZ, Gunachitra T, Sankar D, Tamilselvan S, Meena M, SenthilKannan K, Vimalan M, Mohamed MG (2022) Domestic microwave supported green synthesis of ZnO nanoparticles for electronic, mechano, rheological and frequency intensifying applications. J Mater Sci Mater Electron 33(17):14144–14158. https://doi.org/10.1007/s10854-022-08344-0

    Article  Google Scholar 

  28. Al-Bayati FA (2009) Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq. Ann Clin Microbiol Antimicrob 8:20. https://doi.org/10.1186/1476-0711-8-20

    Article  Google Scholar 

  29. Hankett JM, Liu Y, Zhang X, Zhang C, Chen Z (2013) Molecular level studies of polymer behaviors at the water interface using sum frequency generation vibrational spectroscopy. J Polym Sci B Polym Phys 51(5):311–328. https://doi.org/10.1002/polb.23221

    Article  Google Scholar 

  30. Vijayaraghavan T, Sivasubramanian R, Hussain S, Ashok A (2017) A facile synthesis of LaFeO3-based perovskites and their application towards sensing of neurotransmitters. ChemistrySelect 2(20):5570–5577. https://doi.org/10.1002/slct.201700723

    Article  Google Scholar 

  31. Abbas G, Kumar N, Kumar D, Pandey G (2019) Effect of reaction temperature on shape evolution of palladium nanoparticles and their cytotoxicity against A-549 lung cancer cells. ACS Omega 4(26):21839–21847. https://doi.org/10.1021/acsomega.9b02776

    Article  Google Scholar 

  32. Vu TT, Nguyen PT, Pham NH, Le TH, Nguyen TH, Do DT, La DD (2022) Green synthesis of selenium nanoparticles using cleistocalyx operculatus leaf extract and their acute oral toxicity study. J Compos Sci 6:(10). https://doi.org/10.3390/jcs6100307

  33. Varma R, Vasudevan S (2020) Extraction, characterization, and antimicrobial activity of chitosan from horse mussel modiolus modiolus. ACS Omega 5(32):20224–20230. https://doi.org/10.1021/acsomega.0c01903

    Article  Google Scholar 

  34. Kordy MGM, Abdel-Gabbar M, Soliman HA, Aljohani G, BinSabt M, Ahmed IA, Shaban M (2022) Phyto-capped ag nanoparticles: green synthesis, characterization, and catalytic and antioxidant activities. Nanomaterials 12(3). https://doi.org/10.3390/nano12030373

  35. Dobrucka R, Szymanski M, Przekop R (2019) The study of toxicity effects of biosynthesized silver nanoparticles using Veronica officinalis extract. Int J Environ Sci Technol 16(12):8517–8526. https://doi.org/10.1007/s13762-019-02441-0

    Article  Google Scholar 

  36. Belaiche Y, Khelef A, Laouini SE, Bouafia A, Tedjani ML, Barhoum A (2021) Green synthesis and characterization of silver/silver oxide nanoparticles using aqueous leaves extract of Artemisia herba-alba as reducing and capping agents. Rom J Mater 51(3):342–352

  37. Tedjani ML, Khelef A, Laouini SE, Bouafia A, Albalawi N (2022) Optimizing the antibacterial activity of iron oxide nanoparticles using central composite design. J Inorg Organomet Polym Mater 32(9):3564–3584. https://doi.org/10.1007/s10904-022-02367-0

    Article  Google Scholar 

  38. Nanaei M, Nasseri MA, Allahresani A, Kazemnejadi M (2019) Phoenix dactylifera L. extract: antioxidant activity and its application for green biosynthesis of Ag nanoparticles as a recyclable nanocatalyst for 4-nitrophenol reduction. SN Appl Sci 1(8):853. https://doi.org/10.1007/s42452-019-0895-4

    Article  Google Scholar 

  39. Jose Luis A-T, du Wessel T (2018) The role of UV-visible spectroscopy for phenolic compounds quantification in Winemaking. In: Rosa Lidia S-O, Ángel de la Cruz P-C (eds) Frontiers and new trends in the science of fermented food and beverages. IntechOpen, Rijeka, p Ch. 3. https://doi.org/10.5772/intechopen.79550

    Chapter  Google Scholar 

  40. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313–7352. https://doi.org/10.3390/molecules15107313

    Article  Google Scholar 

  41. Pfost D, Vardeny Z, Tauc J (1985) Pfost, vardeny, and tauc respond. Phys Rev Lett 54(3):251–251. https://doi.org/10.1103/PhysRevLett.54.251

    Article  Google Scholar 

  42. El-Ghmari B, Farah H, Ech-Chahad A (2021) A new approach for the green biosynthesis of silver oxide nanoparticles Ag2O, characterization and catalytic application. 2021:10. https://doi.org/10.9767/bcrec.16.3.11577.651-660

  43. He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44(2):532–553. https://doi.org/10.1159/000485089

    Article  Google Scholar 

  44. Temraz A, El-Tantawy WH (2008) Characterization of antioxidant activity of extract from Artemisia vulgaris. Pak J Pharm Sci 21(4):321–326

    Google Scholar 

  45. Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, Chang CM (2022) Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of ficus religiosa. Molecules 27(4). https://doi.org/10.3390/molecules27041326

  46. Ahmad S, Rehman T, Abbasi W, Zaman M (2017) Analysis of antioxidant activity and total phenolic content of some homoeopathic mother tinctures. Indian J Res Homoeopathy 11(1):21–25

    Article  Google Scholar 

  47. Kumar B, Smita K, Cumbal L, Debut A (2017) Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J Biol Sci 24(1):45–50. https://doi.org/10.1016/j.sjbs.2015.09.006

    Article  Google Scholar 

  48. Daoudi H, Bouafia A, Meneceur S, Laouini SE, Belkhalfa H, Lebbihi R, Selmi B (2022) Secondary metabolite from nigella sativa seeds mediated synthesis of silver oxide nanoparticles for efficient antioxidant and antibacterial activity. J Inorg Organomet Polym Mater 32(11):4223–4236. https://doi.org/10.1007/s10904-022-02393-y

    Article  Google Scholar 

  49. Mathew S, Abraham TE, Zakaria ZA (2015) Reactivity of phenolic compounds towards free radicals under in vitro conditions. J Food Sci Technol 52(9):5790–5798. https://doi.org/10.1007/s13197-014-1704-0

    Article  Google Scholar 

  50. Lava MB, Muddapur UM, Basavegowda N, More SS, More VS (2021) Characterization, anticancer, antibacterial, anti-diabetic and anti-inflammatory activities of green synthesized silver nanoparticles using Justica wynaadensis leaves extract. Mater Today: Proc 46:5942–5947. https://doi.org/10.1016/j.matpr.2020.10.048

    Article  Google Scholar 

  51. Selem E, Mekky AF, Hassanein WA, Reda FM, Selim YA (2022) Antibacterial and antibiofilm effects of silver nanoparticles against the uropathogen Escherichia coli U12. Saudi J Biol Sci 29(11):103457. https://doi.org/10.1016/j.sjbs.2022.103457

    Article  Google Scholar 

  52. Skóra B, Krajewska U, Nowak A, Dziedzic A, Barylyak A, Kus-Liśkiewicz M (2021) Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Sci Rep 11(1):13451. https://doi.org/10.1038/s41598-021-92812-w

    Article  Google Scholar 

  53. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182. https://doi.org/10.1016/j.jcis.2004.02.012

    Article  Google Scholar 

  54. Lee HJ, Yeo SY, Jeong SH (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38(10):2199–2204. https://doi.org/10.1023/A:1023736416361

    Article  Google Scholar 

  55. Recordati C, De Maglie M, Bianchessi S, Argentiere S, Cella C, Mattiello S, Cubadda F, Aureli F, D’Amato M, Raggi A, Lenardi C, Milani P, Scanziani E (2016) Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol 13(1):12. https://doi.org/10.1186/s12989-016-0124-x

    Article  Google Scholar 

  56. Patlolla AK, Hackett D, Tchounwou PB (2015) Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol Cell Biochem 399(1):257–268. https://doi.org/10.1007/s11010-014-2252-7

    Article  Google Scholar 

  57. Cerqueira MA, Vicente AA, Pastrana LM (2018) Chapter 1 - nanotechnology in food packaging: opportunities and challenges. In: Cerqueira MÂPR, Lagaron JM, Pastrana Castro LM, de Oliveira Soares Vicente AAM (eds) Nanomaterials for food packaging. Elsevier, pp 1–11. https://doi.org/10.1016/B978-0-323-51271-8.00001-2

    Chapter  Google Scholar 

Download references

Funding

The authors, Prof. Ahmed Barhoum and Prof. Ali Alsalme, would like to acknowledge the support received from the Egypt–France Joint Program (Imhotep, Project No. 43990SF, 2020-2022), Joint Egyptian Japanese Scientific Cooperation (JEJSC, Project No. 42811) and the Researchers Supporting Project (RSP-2023R78) at King Saud University, Riyadh, Saudi Arabia. 

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.A., I.M., I.T., A.BOUAFIA., G.G.H., H.A.M., S.M., S.E.L., A.B.; methodology, M.A., I.M., I.T., A.BOUAFIA., G.G.H., H.A.M., S.M., S.E.L., A.B.; validation, M.A., I.M., I.T., A.BOUAFIA., G.G.H., H.A.M., S.M., S.E.L., A.B.; investigation, M.A., I.M., I.T., A.BOUAFIA., G.G.H., H.A.M., S.M., S.E.L., A.B.; resources, M.A., I.M., I.T., A.BOUAFIA., G.G.H., H.A.M., S.M., S.E.L., A.A., A.B.; data curation, M.A., I.M., I.T., A.BOUAFIA., G.G.H., H.A.M., S.M., S.E.L., A.B.; writing—original draft preparation, M.A., I.M., I.T., A.BOUAFIA., G.G.H., H.A.M., S.M., S.E.L., A.B.; writing—review and editing, M.A., I.M., I.T., A.BOUAFIA., G.G.H., H.A.M., S.M., S.E.L., A.A., A.B.; supervision, M.A., I.M., I.T., A.BOUAFIA., G.G.H., H.A.M., S.M., S.E.L., A.B. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ahmed Barhoum.

Ethics declarations

Ethical approval

Ethical approval statements for animal studies of this work were obtained for a study from the University of El Oued, El Oued 39000, Algeria.

Competing interests

All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzi, M., Medila, I., Toumi, I. et al. Plant extract-mediated synthesis of Ag/Ag2O nanoparticles using Olea europaea leaf extract: assessing antioxidant, antibacterial, and toxicological properties. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-05093-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-05093-w

Keywords

Navigation