Skip to main content
Log in

Effect of chemically treated kenaf fiber on the mechanical, morphological, and microstructural characteristics of PLA-based sustainable bio-composites fabricated via direct injection molding route

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Global manufacturing of high-performance manufactured products made from natural resources is increasing as a result of renewable and environmental concerns. This study investigated the mechanical and morphological properties of PLA and kenaf short fiber (3–4 mm). The kenaf fibers were treated with different chemical concentrations (10% and 20%) before being used to make composites with an injection molding machine. SEM analysis was performed on the treated and mechanically tested bio-composites. Mechanical analysis of the generated composites was performed utilizing tensile, flexural, and impact tests to investigate the influence of treatment on interfacial adhesion. Fibers treated with a 20% concentration of sodium acetate provided the most desirable tensile and flexural characteristics in the composites. Apart from impact strength, chemical treatment has a significant impact on the properties of green composites. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to examine the crystallinity and infrared spectra of bio-composites. The chemical treatment of natural fiber with sodium acetate is an environmentally friendly approach for producing long-lasting PLA-based bio-composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

It is purely an experimental research work; all data acquired during experiments and analyses are included in this paper.

Abbreviations

PLA:

polylactic acid

KF:

kenaf fiber

PLA:

poly-lactic acid

UTM:

universal testing machine

SEM:

scanning electron microscopy

ROKFRC:

randomly oriented kenaf fiber-reinforced composites

XRD:

X-ray diffraction

FTIR:

Fourier transformation infrared

References

  1. Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos B Eng 51:28–34

    Article  Google Scholar 

  2. Madhu P, Sanjay MR, Senthamaraikannan P A review on synthesis and characterization of commercially available natural fibers: Part II. J Nat Fibers. https://doi.org/10.1080/15440478.2017.1379045

  3. Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK, Jawaid M (2018) Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr Polym 181:650–658

  4. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  5. Komal UK, Lila MK, Chaitanya S, Singh I (2019) Fabrication of short fiber reinforced polymer composites. In: Bajpai PK, Singh I (eds) Reinforced polymer composites: processing, characterization and post life cycle assessment. Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, Germany, pp 21–38. https://doi.org/10.1002/9783527820979.ch2

    Chapter  Google Scholar 

  6. Zhang P, Zheng Y, Wang K, Zhang J (2018) A review on properties of fresh and hardened geopolymer mortar. Compos Part B Eng 152:79–95

    Article  Google Scholar 

  7. Kuranl𝚤 ÖF, Uysal M, Abbas MT et al (2022) Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Constr Build Mater 325:126747

    Article  Google Scholar 

  8. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos B: Eng 133:210–217

    Article  Google Scholar 

  9. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Compos Sci Technol 67(7-8):1627–1639

    Article  Google Scholar 

  10. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    Article  Google Scholar 

  11. Yavana Rani S et al (2022) Durability of geopolymer concrete with addition of polypropylene fibre. Mater Today Proc 56:2846–2851

    Article  Google Scholar 

  12. Xu J, Kang A, Wu Z, Xiao P, Gong Y (2021) Effect of high-calcium basalt fiber on the workability, mechanical properties and microstructure of slag-fly ash geopolymer grouting material. Constr Build Mater 302:124089

    Article  Google Scholar 

  13. Zhang Z, Yao X, Zhu H (2010) Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties. Appl Clay Sci 49(1):1–6

    Article  Google Scholar 

  14. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos Interfaces 8(5):313–343

    Article  Google Scholar 

  15. Deng Z, Yang Z, Bian J et al (2022) Advantages and disadvantages of PVA-fibre-reinforced slag- and fly ash-blended geopolymer composites: engineering properties and microstructure. Constr Build Mater 349:128690

    Article  Google Scholar 

  16. Abbas A-GN, Aziz FNAA, Abdan K, Nasir NAM, Huseien GF (2022) A state-of-the-art review on fibre-reinforced geopolymer composites. Constr Build Mater 330:127187

    Article  Google Scholar 

  17. Zhang P, Han X, Hu S, Wang J, Wang T (2022a) High-temperature behavior of polyvinyl alcohol fiber-reinforced metakaolin/fly ash-based geopolymer mortar. Compos Part B Eng 244:110171

    Article  Google Scholar 

  18. Zhang P, Kang L, Zheng Y, Zhang T, Zhang B (2022b) Influence of SiO2/Na2O molar ratio on mechanical properties and durability of metakaolin-fly ash blend alkali-activated sustainable mortar incorporating manufactured sand. J Mater Res Technol 18:3553–3563

    Article  Google Scholar 

  19. Wang K, Zhang P, Guo J, Gao Z (2021) Single and synergistic enhancement on durability of geopolymer mortar by polyvinyl alcohol fiber and nano-SiO2. J Mater Res Technol 15:1801–1814

    Article  Google Scholar 

  20. Zhu H, Zhang Z, Zhu Y, Tian L (2014) Durability of alkali-activated fly ash concrete: chloride penetration in pastes and mortars. Constr Build Mater 65:51–59

    Article  Google Scholar 

  21. Thanushan K, Sathiparan N (2022) Mechanical performance and durability of banana fibre and coconut coir reinforced cement stabilized soil blocks. Materialia. 21:101309

    Article  Google Scholar 

  22. Sá Ribeiro MG, Sá Ribeiro MG, Keane PF, Sardela MR, Kriven WM, Sá Ribeiro RA (2021) Acid resistance of metakaolin-based, bamboo fiber geopolymer composites. Constr Build Mater 302:124194

    Article  Google Scholar 

  23. Hadigheh SA, Ke F, Fatemi H (2022) Durability design criteria for the hybrid carbon fibre reinforced polymer (CFRP)-reinforced geopolymer concrete bridges. Structure. 35:325–339

    Article  Google Scholar 

  24. Guo L, Wu Y, Xu F et al (2020) Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Compos Part B Eng 183:107689

    Article  Google Scholar 

  25. Bankir MB, Korkut SU (2020) Performance optimization of hybrid fiber concretes against acid and sulfate attack. J Build Eng 32:101443

    Article  Google Scholar 

  26. Meng C, Li W, Cai L, Shi X, Jiang C (2020) Experimental research on durability of high-performance synthetic fibers reinforced concrete: resistance to sulfate attack and freezing-thawing. Constr Build Mater 262:120055

    Article  Google Scholar 

  27. Han QY et al (2022) Comprehensive review of the properties of fly ash-based geopolymer with additive of nano-SiO2. Nanotechnol Rev 11(1):1478–1498

    Article  MathSciNet  Google Scholar 

  28. Ren D, Yan C, Duan P, Zhang Z, Li L, Yan Z (2017) Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Constr Build Mater 134:56–66

    Article  Google Scholar 

  29. Ren J, Lai Y (2021) Study on the durability and failure mechanism of concrete modified with nanoparticles and polypropylene fiber under freeze-thaw cycles and sulfate attack. Cold Reg Sci Technol 188:103301

    Article  Google Scholar 

  30. Khan M, Cao M, Chu SH, Ali M (2022) Properties of hybrid steel-basalt fiber reinforced concrete exposed to different surrounding conditions. Constr Build Mater 322:126340

    Article  Google Scholar 

  31. Liang N, Mao J, Yan R, Liu X, Zhou X (2022) Corrosion resistance of multiscale polypropylene fiber-reinforced concrete under sulfate attack. Case Stud Constr Mater 16:e01065

    Google Scholar 

  32. Nguyen H, Kinnunen P, Carvelli V, Illikainen M (2019) Durability of ettringite-based composite reinforced with polypropylene fibers under combined chemical and physical attack. Cem Concr Compos 102:157–168

    Article  Google Scholar 

  33. Wang W, Xu S, Li Q, Dong S (2022) Long-term performance of fiber reinforced cementitious composites with high ductility under seawater attack with different salinities. Constr Build Mater 317:126164

    Article  Google Scholar 

  34. Li F, Chen D, Lu Y, Zhang H, Li S (2022) Influence of mixed fibers on fly ash based geopolymer resistance against freeze-thaw cycles. J Non-Cryst Solids 584:121517

    Article  Google Scholar 

  35. Öztürk O (2022) Comparison of frost resistance for the fiber reinforced geopolymer and cementitious composites. Mater Today Proc 65:1504–1510

    Article  Google Scholar 

  36. Aygörmez Y, Canpolat O, Al-mashhadani MM, Uysal M (2020) Elevated temperature, freezing-thawing and wetting-drying effects on polypropy lene fiber reinforced metakaolin based geopolymer composites. Constr Build Mater 235:117502

    Article  Google Scholar 

  37. Zhao N, Wang S, Quan X, Xu F, Liu K, Liu Y (2021) Behavior of polyvinyl alcohol fiber reinforced geopolymer composites under the coupled attack of sulfate and freeze-thaw in a marine environment. Ocean Eng 238:109734

    Article  Google Scholar 

  38. Zhao N, Wang S, Quan X, Liu K, Xu J, Xu F (2022) Behavior of fiber reinforced cementitious composites under the coupled attack of sulfate and dry/wet in a tidal environment. Constr Build Mater 314:125673

    Article  Google Scholar 

  39. Ali N, Canpolat O, Aygörmez Y, al-Mashhadani MM (2020) Evaluation of the 12–24 mm basalt fibers and boron waste on reinforced metakaolin-based geopolymer. Constr Build Mater 251:118976

    Article  Google Scholar 

  40. Sahin F, Uysal M, Canpolat O, Aygörmez Y, Cosgun T, Dehghanpour H (2021) Effect of basalt fiber on metakaolin-based geopolymer mortars containing rilem, basalt and recycled waste concrete aggregates. Constr Build Mater 301:124113

    Article  Google Scholar 

  41. Yuan Y, Zhao R, Li R et al (2020) Frost resistance of fiber-reinforced blended slag and class F fly ash-based geopolymer concrete under the coupling effect of freeze-thaw cycling and axial compressive loading. Constr Build Mater 250:118831

    Article  Google Scholar 

  42. Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly (lactic acid) composites. Compos Part B Eng 56:717–723. https://doi.org/10.1016/j.compositesb.2013.09.012

    Article  Google Scholar 

  43. Sanjay MR, Madhu P, Jawaid M Characterization and properties of natural fiber polymer composites: a comprehensive review. https://doi.org/10.1016/j.jclepro.2017.10.101

  44. Rowell RM, Sanadi A, Jacobson R, Caulfield D (1999) Properties of kenaf/polypropylene composites. Kenaf properties, processing and products. Ag & Bio Engineering, Mississippi

    Google Scholar 

  45. Hussain A, Goljandin D, Podgursky V, Abbas MM, Krasnou I (2023) Experimental mechanics analysis of recycled polypropylene-cotton composites for commercial applications. Adv Ind Eng Polym Res 6(3):226–238

    Google Scholar 

  46. Omar MF, Md Akil H, Ahmad ZA, Mazuki AAM, Yokoyama T (2010) Dynamic properties of pultruded natural fiber reinforced composites using Split Hopkinson Pressure Bar technique. Mater Des 31:4209–4218

    Article  Google Scholar 

  47. Manral A, Bajpai PK (2020) Static and dynamic mechanical analysis of geometrically different kenaf/PLA green composite laminates. Polym Compos 41(2):691–706

    Article  Google Scholar 

  48. Kabir MM, Wang Lau H, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B 43(7):2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

    Article  Google Scholar 

  49. Chaitanya S, Singh I (2018) Ecofriendly treatment of aloe vera fibers for PLA based green composites. Int J Precis Eng Manuf - Green Technol 38(6):1053–1062. https://doi.org/10.1002/pc.23668

    Article  Google Scholar 

  50. Hussain, Abrar, Vitali Podgursky, Dmitri Goliandin, Maksim Antonov, Rahul Kumar, Nikhil Kamboj, Ramin Rahmani Ahranjani et al. (2022) “Tribological and circular economy aspects of polypropylene/cotton fibre hybrid composite.” Proceedings of the Estonian Academy of Sciences 71, no. 2. https://kirj.ee/proceedings-of-the-estonian-academy-of-sciences-publications/?filter[year]=2022&filter[issue]=988&filter[publication]=9961. Accessed 10 May 2023

  51. Zarina S, Ahmed I Biodegradable composite films based on k-carrageenan reinforced by cellulose nanocrystal from kenaf fibers. Bio Resources 10(1). https://doi.org/10.15376/biores.10.1.256-271

  52. Zafar MT, Maiti SN, Ghosh AK (2016) Effect of surface treatment of jute fibers on the interfacial adhesion in poly (lactic acid)/jute fiber biocomposites. Fibers Polym 17:266–274

    Article  Google Scholar 

  53. Sharma S, Sudhakara P, Singh J, Sanjay MR, Siengchin S (2023a) Fabrication of novel polymer composites from leather waste fibers and recycled poly(ethylene-vinyl-acetate) for value-added products. Sustainability. 15(5):4333. https://doi.org/10.3390/su15054333

    Article  Google Scholar 

  54. Sharma S, Sudhakara P, Singh J, Singh S, Singh G (2023b) Emerging progressive developments in the fibrous composites for acoustic applications. J Manuf Process 102(29):443–477. https://doi.org/10.1016/j.jmapro.2023.07.053

    Article  Google Scholar 

  55. Karthikeyan P, Prabhu L, Bhuvaneswari B, Yokesvaran K, Jerin A, Saravanan R, Raghuvaran S, Negash K, Sharma S (2023) Influences of various thermal cyclic behaviours on thermo adsorption/mechanical characteristics of epoxy composite enriched with basalt fiber. Adsorpt Sci Technol 2023:9716173. https://doi.org/10.1155/2023/9716173

    Article  Google Scholar 

  56. Ranakoti L, Gangil B, Rajesh PK, Singh T, Sharma S, Li C, Ilyas RA, Mahmoud O (2022a) Effect of surface treatment and fiber loading on the physical, mechanical, sliding wear, and morphological characteristics of tasar silk fiber waste-epoxy composites for multifaceted biomedical and engineering applications: fabrication and characterizations. J Mater Res Technol 19:2863–2876. https://doi.org/10.1016/j.jmrt.2022.06.024

    Article  Google Scholar 

  57. Sharma S, Sudhakara P, Petru M, Singh J, Rajkumar S (2022) Effect of nanoadditives on the novel leather fiber/recycled poly(ethylene-vinyl-acetate) polymer composites for multifunctional applications: fabrication, characterizations, and multiobjective optimization using central composite design. Nanotechnol Rev 11(1):2366–2432. https://doi.org/10.1515/ntrev-2022-0067

    Article  Google Scholar 

  58. Dwivedi SP, Sharma S, Krishna BV, Sonia P, Saxena KK, Iqbal A, Djavanroodi F (2023a) Effect of the addition of TiB2 with waste glass powder on microstructure, mechanical and physical behavior of PET-based polymer composite material. Mech Adv Mater Struct:1–10. https://doi.org/10.1080/15376494.2023.2239229

  59. Karthik A, Jafrey Daniel James D, Vijayan V, Ahmad Z, Rajkumar S, Sharma S, Sharma KP, Singh R, Li C, Eldin SM (2023) Study on the physicomechanical, fracture-deformation, interface-adhesion, and water-absorption properties of twill fabric cotton-bamboo/epoxy composites. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2023.05.102

  60. Madhu P, Sanjay MR, Senthamaraikannan P, Pradeep S (2020) Effect of various chemical treatments of Prosopis juliflora fibers as composite reinforcement: Physicochemical, thermal, mechanical, and morphological properties https://doi.org/10.1080/15440478.2018.1534191

  61. Miniappan PK, Marimuthu S, Kumar SD, Gokilakrishnan G, Sharma S, Li C, Dwivedi SP, Abbas M (2023) Mechanical, fracture-deformation, and tribology behavior of fillers-reinforced sisal fiber composites for lightweight automotive applications. Rev Adv Mater Sci 62(1):20230342. https://doi.org/10.1515/rams-2023-0342

  62. Miniappan PK, Marimuthu S, Dharani Kumar S, Sharma S, Kumar A, Salah B, Ullah SS (2023b) Exploring the mechanical, tribological, and morphological characteristics of areca fiber epoxy composites reinforced with various fillers for multifaceted applications. Front Mater 10. https://doi.org/10.3389/fmats.2023.1185215

  63. Dhiman R, Sharma S, Gulati P, Singh J, Jha K, Li C, Kumar A, Eldin S, Abbas M (2023) Fabrication and characterizations of glass fiber-reinforced functional leaf spring composites with or without microcapsule-based dicyclopentadiene as self-healing agent for automobile industrial applications: Comparative analysis. J Mater Res Technol:25. https://doi.org/10.1016/j.jmrt.2023.06.039

  64. Gao T, Zhang Y, Li C, Wang Y, Chen Y, An Q, Zhang S, Li HN, Cao H, Ali HM, Zhou Z, Sharma S (2022) Fiber-reinforced composites in milling and grinding: Machining bottlenecks and advanced strategies. Front Mech Eng. https://doi.org/10.1007/s11465-022-0680-8

  65. Sharma H, Kumar A, Rana S, Sahoo NG, Jamil M, Rajeev K, Sharma S et al (2023c) Critical review on advancements on the fiber-reinforced composites: role of fiber/matrix modification on the performance of the fibrous composites. J Mater Res Technol 26:2975–3002. https://doi.org/10.1016/j.jmrt.2023.08.036

    Article  Google Scholar 

  66. Jha K, Tamrakar P, Rajeev K, Sharma S, Jujhar S, Ilyas RA, Rangappa SM, Siengchin S (2022) Effect of hybridization on physio-mechanical behavior of Vetiver and Jute fibres reinforced epoxy composites for structural applications: studies on fabrication, physicomechanical, water-absorption, and morphological properties. J Ind Text 0(0):1–23. https://doi.org/10.1177/15280837221098573

    Article  Google Scholar 

  67. Mishra SK, Dahiya S, Gangil B, Ranakoti L, Singh T, Sharma S, Boonyasopon P, Rangappa SM, Siengchin S (2022) Mechanical, morphological, and tribological characterization of novel walnut filler reinforced polylactic acid-based biocomposites and prediction based on artificial neural network. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03670-z

  68. G. Rajeshkumar, S. Arvindh Seshadri, G.L. Devnani, M.R. Sanjay Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review. https://doi.org/10.1016/j.jclepro.2021.127483

  69. Singh B, Kumar R, Chohan J, Sharma S, Singh J, Ilyas RA, Rangappa SM, Siengchin S, Naresh K, Raghu S, James R (2022) Investigation of copper reinforced acrylonitrile butadiene styrene and Nyl on 6 based thermoplastic polymer nanocomposite filaments for 3D printing of electronic components. High Perform Polym. https://doi.org/10.1177/09540083221112307

  70. Banerjee, A, K Jha, M Petru, R Kumar, S Sharma, MS Saini, KA Mohammed, A Kumar, MAbbas, and EMT-Eldin. Fabrication and Characterization of weld attributes in Hot Gas welding of Alkali treated hybrid Flax Fiber and Pine Cone Fibers reinforced Poly-lactic Acid (PLA) based Biodegradable Polymer Composites: Studies on Mechanical and Morphological properties. J Mater Res Technol (2023). https://doi.org/10.1016/j.jmrt.2023.09.252

  71. Dwivedi SP, Selvaprakash S, Sharma S, Kumari S, Saxena KK, Goyal R, Iqbal A, Djavanroodi F (2023b) Evaluation of various properties for spent alumina catalyst and Si3N4 reinforced with PET-based polymer composite. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2023.2249888

  72. Rajawat AS, Singh S, Gangil B, Ranakoti L, Sharma S, Asyraf MRM, Razman MR (2022) Effect of marbles dust on mechanical, morphological, and wear performance of basalt fibre reinforced epoxy composites for structural applications. Polymers 14(7):1325. https://doi.org/10.3390/polym14071325

    Article  Google Scholar 

  73. Ranakoti L, Gangil B, Mishra SK, Singh T, Sharma S, Ilyas RA, El-Khatib S (2022b) Critical review on polylactic acid: properties, structure, processing, biocomposites, and nanocomposites. Materials 15(12):4312. https://doi.org/10.3390/ma15124312

    Article  Google Scholar 

  74. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated bio composites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68(2):424–432. https://doi.org/10.1016/j.compscitech.2007.06.022

    Article  Google Scholar 

  75. Vijay R, Vinod A, Sanjay MR (2021) Characterization of chemical treated and untreated natural fibers from Pennisetum orientale grass- a potential reinforcement for lightweight polymeric applications Int. Int J Lightweight Mater Manuf 4:43–49

    Google Scholar 

  76. Akil HM, Omar MF, Mazuki A, Safiee S, Ishak Z, Abu Bakar A (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121. https://doi.org/10.1016/j.matdes.04.008

    Article  Google Scholar 

  77. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442. https://doi.org/10.1016/j.matdes.2012.11.025

    Article  Google Scholar 

  78. Bajpai PK, Singh I, Madaan J (2012) Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J Reinf Plast Compos 31(24):1712–1724. https://doi.org/10.1177/0731684412447992

    Article  Google Scholar 

  79. Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67(3–4):462–470. https://doi.org/10.1016/j.compscitech.2006.08.024

    Article  Google Scholar 

  80. Chaitanya S, Singh I (2017) Sisal fiber-reinforced green composites: effect of ecofriendly fiber treatment. Polym Compos 16(2):101–113. https://doi.org/10.1002/pc.24511

    Article  Google Scholar 

  81. Fairuz AM, Sapuan SM, Zainudin ES, Jaafar CN (2015) Pultrusion process of natural fibre-reinforced polymer composites. In: Salit MS, Jawaid M, Yusoff NB, Hoque ME (eds) Manufacturing of natural fibre reinforced polymer composites. Springer International Publishing, Cham, pp 217–231. https://doi.org/10.1007/978-3-319-07944-8

    Chapter  Google Scholar 

  82. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers. Prog Polym Sci 37(11):1552–1596. https://doi.org/10.1016/j.progpolymsci

    Article  Google Scholar 

  83. Komal U, Lila M PLA/banana fiber based sustainable bio composites: A manufacturing perspective. Compos Part B, Elsevier. https://doi.org/10.1016/j.compositesb.2019.107535

  84. Lila MK, Shukla K, Komal UK, Singh I (2019) Accelerated thermal ageing behaviour of bagasse fibers reinforced poly (lactic acid) based biocomposites. Compos Part B Eng 156(2019):121–127. https://doi.org/10.1016/j.compositesb.2018.08.068

    Article  Google Scholar 

  85. Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites - a review. J Thermoplast Compos Mater 22(2):135–162. https://doi.org/10.1177/0892705708091860

    Article  Google Scholar 

  86. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A: Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  Google Scholar 

  87. Dwivedi SP, Sharma S (2023) Effect of Ni addition on the behavior of dissimilar A356-AZ91/CeO2 aluminum-magnesium based composite fabricated by friction stir process technique. Compos Interfaces:1–26. https://doi.org/10.1080/09276440.2023.2260236

  88. Sahu P, Gupta MK (2019) Effect of ecofriendly coating and treatment on mechanical, thermal and morphological properties of sisal fibre. Indian J Fibre Text Res 44(2):199–204

    Google Scholar 

  89. Serizawa S, Inoue K, Iji M (2006) Kenaf-fiber-reinforced poly(lactic acid) used for electronic products. J Appl Polym Sci 100(1):618–624. https://doi.org/10.1002/app.23377

    Article  Google Scholar 

  90. Sharma S, Verma A, Rangappa SM, Siengchin S, Ogata S (2023) Recent progressive developments in conductive-fillers based polymer nanocomposites (CFPNC’s) and conducting polymeric nanocomposites (CPNC’s) for multifaceted sensing applications. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2023.08.300

  91. Wang L, Tong Z, Ingram LO, Cheng Q, Matthews S (2013) Green composites of poly (lactic acid) and sugarcane bagasse residues from bio-refinery processes. J Polym Environ 21(3):780–788. https://doi.org/10.1007/s10924-013-0601-3

    Article  Google Scholar 

  92. Rani S, Sharma S, Bansal M, Garg R, Garg R (2022) Enhanced Zn (II) adsorption by chemically modified sawdust based biosorbents. Environ Sci Pollut Res:1–16

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University (KKU) for funding this research through the Research Group Program Under the Grant Number:(R.G.P.2/515/44).

Author information

Authors and Affiliations

Authors

Contributions

SK: conceptualization, methodology, formal analysis and investigation, visualization, and writing—original draft preparation; RD: conceptualization, investigation, and writing—review and editing; AM: investigation and writing—review and editing; SS: conceptualization, methodology, formal analysis and investigation, visualization, writing—original draft preparation, writing—review and editing, supervision, project administration, validation; SPD: formal analysis, writing—review and editing, supervision, project administration, validation; AK: formal analysis, writing—review and editing, supervision, project administration, validation; CL: formal analysis, writing—review and editing, supervision, project administration, validation; MA: formal analysis, writing—review and editing, supervision, project administration, validation.

Corresponding author

Correspondence to Shubham Sharma.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Dang, R., Manna, A. et al. Effect of chemically treated kenaf fiber on the mechanical, morphological, and microstructural characteristics of PLA-based sustainable bio-composites fabricated via direct injection molding route. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04916-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04916-0

Keywords

Navigation