Skip to main content
Log in

Study on semi-empirical kinetic model of serial compound gasification process for high moisture solid waste

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The serial compound fluidized bed gasification process of HMSW (high moisture solid waste) is studied, and the semi-empirical kinetic model is established by combining hydrodynamics and reaction kinetics. The model include combustion sub-model and gasification sub-model, which are divided into dense phase and dilute phase for simulation. The dense phase is simulated by the three-phase bubble bed theory, and the dilute phase is simulated by Wen-Chen entrainment elutriation model combined with the ring-core model. The pyrolysis model is based on the empirical relationship. The effects of gasification temperature, S/HMSW (steam/high moisture solid waste) ratio, HMSW/C (high moisture solid waste/coal) ratio, and moisture on the gasification process are studied. The results show that the gasification temperature of 1000 °C, S/HMSW of 1.13, HMSW/C of 3, and moisture of 26% are the optimal gasification parameters. The study can guide the design, operation, and optimization of the serial compound gasification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

A r :

Archimedes number, (-)

A t :

Bed area, (m2)

C D :

Drag coefficient, (-)

C i :

Molar concentration of the ith component, (kmol/m3)

C p :

Specific heat capacity, (kJ/kg·K)

d :

Diameter, (m)

d Sv :

The diameter of a sphere having the same specific surface area as the particle, (m)

D :

Gas diffusion coefficient, (m2/s)

f 1 :

The transfer rate of particles from the core zone to the annular zone, (m/s)

f 2 :

The transfer rate of particles from the annular zone to the core zone, (m/s)

f c :

The ratio of the cloud volume to the bubble volume, (%)

f L :

Relative reactivity factor, (-)

f w :

The ratio of the wake volume to the bubble volume, (%)

F(h):

Particle entrainment rate, (kg/(m2·s))

F 0 :

Entrainment rate at the surface of the bed, (kg/(m2·s))

F :

Entrainment rate at TDH, (kg/(m2·s))

H den :

Height of dense phase zone, (m)

H den,coal :

Bed height in coal gasification zone, (m)

H :

Bed height, (m)

HMSW:

High moisture solid waste, (-)

k eq,i :

Equilibrium constants for reaction i, (depends on the reaction)

k s :

Surface reaction rate constant, (m/s)

k i :

Rate constants for reaction i, (depends on the reaction)

k T :

The overall reaction rate constant of the heterogeneous reaction in the gasification stage, (s−1)

K bc :

Coefficient of mass transfer between bubble and bubble-cloud, (s−1)

K ce :

Coefficient of mass transfer between bubble-cloud and emulsion, (s−1)

K diff :

Gas diffusion rate constant, (m/s)

m w c :

Molecular weight of carbon, 12, (kg/kmol)

\({n}_{i}^{\mathrm{in}}\) :

Gas diffusion rate constant, (mol/h)

\({n}_{i}^{\mathrm{out}}\) :

Mole of output material, (mol/h)

P :

Pressure, (pa)

r i :

Reaction rate of j reaction, (kmol/m3·s)

R f :

Expansion ratio coefficient, (-)

R e :

Reynolds number, (-)

Sc :

Schmidt number, (-)

S h :

Sherwood number, (-)

S v :

Surface area of a spherical particle, (m2)

t :

Time, (s)

T :

Bed temperature, (K)

TDH :

Transport disengaging height, (m)

u b :

Bubble velocity, (m/s)

u br :

Relative bubble velocity, (m/s)

u ga :

Average gas velocity in annulus zone, (m/s)

u gc :

Average gas velocity in core zone, (m/s)

u ge :

Gas velocity in the emulsion, (m/s)

u pc :

Particle velocity in core zone, (m/s)

u pa :

Particle velocity in annulus zone, (m/s)

u f :

Gas flow velocity between particles in the emulsion phase, (m/s)

u 0 :

Velocity of empty bed (gas apparent velocity), (m/s)

u s, wake :

Rise velocity of particles in the wake, (m/s)

u s, cloud :

Rise velocity of particles in the cloud, (m/s)

V :

Volume, (m3)

x :

Pyrolysis product content of coal, (%)

X :

Carbon conversion rate, (%)

y :

Pyrolysis product content of solid waste, (%)

Y :

The rate of carbon burning consumption, (%)

\(\Delta {H}_{f}^{0}\) :

Standard enthalpy of formation of material, (kJ/mol)

\(\alpha\) :

Attenuation index, (-)

\(\delta\) :

The volume fraction of each phase in the bed, (%)

\(\varepsilon\) :

Void ratio, (%)

\(\mu\) :

Coefficient of kinematic viscosity, (Pa·s)

\(\nu\) :

Coefficient of kinematic viscosity, (m2/s)

\(\rho\) :

Density, (kg/m3)

\(\phi\) :

Mechanism factor during combustion, (-)

\(\eta\) :

System thermal efficiency, (%)

\({\phi }_{s}\) :

Sphericity of solid particles, (-)

ad :

Air dried basis, (-)

ann :

Annulus zone, (-)

b :

Bubble, (-)

c :

Cloud, (-)

core :

Core zone, (-)

ch :

Char, (-)

daf :

Dry ash free, (-)

e :

Emulsion, (-)

g :

Gas, (-)

mf :

Minimum fluidization, (-)

LHV :

Lower caloric value, (-)

k :

Air, (-)

p :

Particles, (-)

t :

Terminal value, (-)

VOL :

Volatile, (-)

w :

Wake, (-)

References

  1. Girotto F, Alibardi L, Cossu R (2015) Food waste generation and industrial uses: a review. Waste Manage 45:32–41. https://doi.org/10.1016/j.wasman.2015.06.008

    Article  Google Scholar 

  2. Xue YN, Luan WX, Wang H, Yang YJ (2019) Environmental and economic benefits of carbon emission reduction in animal husbandry via the circular economy: case study of pig farming in Liaoning China. J Clean Prod 238:117968. https://doi.org/10.1016/j.jclepro.2019.117968

    Article  Google Scholar 

  3. Wang L, Chen Z (2014) An experimental study of a fuel gas produced from vinegar residue through biomass intermittent gasification (in Chinese). Nat Gas Ind 34(03):147–152. https://doi.org/10.3787/j.issn.1000-0976.2014.03.025

    Article  Google Scholar 

  4. Wang L, Bai W (2016) Two-stage gasification of synthetic gas from vinegar residue biomass. J Chongqing Univ Technol 60(9):55–9

    Google Scholar 

  5. Li Y, Pei G, Zhu Y, Liu W, Li H (2022) Vinegar residue biochar: a possible conditioner for the safe remediation of alkaline Pb-contaminated soil. Chemosphere 293:133555. https://doi.org/10.1016/j.chemosphere.2022.133555

    Article  Google Scholar 

  6. Gebreeyessus GD, Mekonnen A, Alemayehu E (2019) A review on progresses and performances in distillery stillage management. J Clean Prod 232:295–307. https://doi.org/10.1016/j.jclepro.2019.05.383

    Article  Google Scholar 

  7. Gao N, Kamran K, Quan C, Williams PT (2020) Thermochemical conversion of sewage sludge: a critical review. Prog Energy Combust Sci 79:100843. https://doi.org/10.1016/j.pecs.2020.100843

    Article  Google Scholar 

  8. Yan M, Liu Y, Song Y, Xu A, Zhu G, Jiang J et al (2022) Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification. Energy 242:123054. https://doi.org/10.1016/j.energy.2021.123054

    Article  Google Scholar 

  9. Liu J, Hamid Fauziah S, Zhong L, Jiang J, Zhu G, Yan M (2022) Conversion of kitchen waste effluent to H2-rich syngas via supercritical water gasification: parameters, process optimization and Ni/Cu catalyst. Fuel 314:123042. https://doi.org/10.1016/j.fuel.2021.123042

    Article  Google Scholar 

  10. Xu R, Zhang Y, Xiong W, Sun W, Fan Q, Zhaohui Y (2020) Metagenomic approach reveals the fate of antibiotic resistance genes in a temperature-raising anaerobic digester treating municipal sewage sludge. J Clean Prod 277:123504. https://doi.org/10.1016/j.jclepro.2020.123504

    Article  Google Scholar 

  11. Yang W, Song W, Li J, Zhang X (2020) Bioleaching of heavy metals from wastewater sludge with the aim of land application. Chemosphere 249:126134. https://doi.org/10.1016/j.chemosphere.2020.126134

    Article  Google Scholar 

  12. Mukherjee C, Denney J, Mbonimpa EG, Slagley J, Bhowmik R (2020) A review on municipal solid waste-to-energy trends in the USA. Renew Sustain Energy Rev 119:109512. https://doi.org/10.1016/j.rser.2019.109512

    Article  Google Scholar 

  13. Thomson R, Kwong P, Ahmad E, Nigam KDP (2020) Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation. Int J Hydrogen Energy 45(41):21087–21111. https://doi.org/10.1016/j.ijhydene.2020.05.160

    Article  Google Scholar 

  14. Ren J, Cao J-P, Zhao X-Y, Yang F-L, Wei X-Y (2019) Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renew Sustain Energy Rev 116:109426. https://doi.org/10.1016/j.rser.2019.109426

    Article  Google Scholar 

  15. Zhang Y, Xu P, Liang S, Liu B, Shuai Y, Li B (2019) Exergy analysis of hydrogen production from steam gasification of biomass: a review. Int J Hydrogen Energy 44(28):14290–14302. https://doi.org/10.1016/j.ijhydene.2019.02.064

    Article  Google Scholar 

  16. Lee RP, Seidl LG, Huang QI, Meyer B (2021) An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities. J Fuel Chem Technol 49(8):1057–76

    Article  Google Scholar 

  17. Zou C, Xue H, Xiong B, Zhang G, Pan S, Jia C et al (2021) Connotation, innovation and vision of “carbon neutrality.” Natural Gas Industry B 8(5):523–537. https://doi.org/10.1016/j.ngib.2021.08.009

    Article  Google Scholar 

  18. Basu P (2013) Combustion and Gasification in Fluidized Beds. Taylor & Francis Group, LLC

    Google Scholar 

  19. Zhang Y, Gao X, Bao F, Li B, Zhao Y, Ke C et al (2018) CFD modeling of sawdust gasification in a lab-scale entrained flow reactor based on char intrinsic kinetics. Part 2: parameter study and multi-objective optimization. Chem Eng Proc - Proc Intensif 125:290–7

    Article  Google Scholar 

  20. Zhang Y, Zhao Y, Gao X, Li B, Huang J (2015) Energy and exergy analyses of syngas produced from rice husk gasification in an entrained flow reactor. J Clean Prod 95:273–280. https://doi.org/10.1016/j.jclepro.2015.02.053

    Article  Google Scholar 

  21. Xiang X, Gong G, Wang C, Cai N, Zhou X, Li Y (2021) Exergy analysis of updraft and downdraft fixed bed gasification of village-level solid waste. Int J Hydrogen Energy 46(1):221–233. https://doi.org/10.1016/j.ijhydene.2020.09.247

    Article  Google Scholar 

  22. Kraft S, Kuba M, Hofbauer H (2018) The behavior of biomass and char particles in a dual fluidized bed gasification system. Powder Technol 338:887–897. https://doi.org/10.1016/j.powtec.2018.07.059

    Article  Google Scholar 

  23. Loha C, Gu S, De Wilde J, Mahanta P, Chatterjee PK (2014) Advances in mathematical modeling of fluidized bed gasification. Renew Sustain Energy Rev 40:688–715. https://doi.org/10.1016/j.rser.2014.07.199

    Article  Google Scholar 

  24. Kaushal P, Proell T, Hofbauer H (2011) Application of a detailed mathematical model to the gasifier unit of the dual fluidized bed gasification plant. Biomass Bioenerg 35(7):2491–2498. https://doi.org/10.1016/j.biombioe.2011.01.025

    Article  Google Scholar 

  25. Basu P (2013) Biomass gasification, pyrolysis and torrefaction. Elsevier, Amsterdam

  26. Len T, Bressi V, Balu AM, Kulik T, Korchuganova O, Palianytsia B et al (2022) Thermokinetics of production of biochar from crop residues: an overview. Green Chem 24(20):7801–7817. https://doi.org/10.1039/D2GC02631G

    Article  Google Scholar 

  27. Sfakiotakis S, Vamvuka D, Patlaka E (2023) A comparison between two kinetic models for the pyrolysis and gasification of woody wastes under a carbon dioxide atmosphere. Bioresourc Technol Rep 22:101487. https://doi.org/10.1016/j.biteb.2023.101487

    Article  Google Scholar 

  28. Hu Z, Peng Y, Sun F, Chen S, Zhou Y (2021) Thermodynamic equilibrium simulation on the synthesis gas composition in the context of underground coal gasification. Fuel 293:120462. https://doi.org/10.1016/j.fuel.2021.120462

    Article  Google Scholar 

  29. Silva IP, Lima RMA, Silva GF, Ruzene DS, Silva DP (2019) Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: a review of model modifications. Renew Sustain Energy Rev 114:109305. https://doi.org/10.1016/j.rser.2019.109305

    Article  Google Scholar 

  30. Safarian S, Unnþórsson R, Richter C (2019) A review of biomass gasification modelling. Renew Sustain Energy Rev 110:378–391. https://doi.org/10.1016/j.rser.2019.05.003

    Article  Google Scholar 

  31. Mazaheri N, Akbarzadeh AH, Madadian E, Lefsrud M (2019) Systematic review of research guidelines for numerical simulation of biomass gasification for bioenergy production. Energy Convers Manage 183:671–688. https://doi.org/10.1016/j.enconman.2018.12.097

    Article  Google Scholar 

  32. Hanchate N, Ramani S, Mathpati CS, Dalvi VH (2021) Biomass gasification using dual fluidized bed gasification systems: a review. J Clean Prod 280:123148. https://doi.org/10.1016/j.jclepro.2020.123148

    Article  Google Scholar 

  33. Abolpour B, Abbaslou H (2023) Isothermal gasification kinetics of char from municipal solid waste ingredients using the thermo-gravimetric analysis. Case Stud Chem Environ Eng 7:100298. https://doi.org/10.1016/j.cscee.2023.100298

    Article  Google Scholar 

  34. Li D, Wang H, Han P (2008) Study on dynamic modeling method of biomass gasification on fluidized bed (in Chinese). Journal of North China Electric Power University(Natural Science Edition). https://doi.org/10.3969/j.issn.1007-2691.2008.01.002.

  35. Zhu L, Jiang P, Fan J, Zhu J, Li L (2015) Kinetic modeling of biomass gasification in interconnected fluidized beds (in Chinese). Natural Gas Industry. 35. https://doi.org/10.3787/j.issn.1000-0976.2015.02.019.

  36. Yan L, Jim Lim C, Yue G, He B, Grace JR (2016) One-dimensional modeling of a dual fluidized bed for biomass steam gasification. Energy Convers Manage 127:612–622. https://doi.org/10.1016/j.enconman.2016.09.027

    Article  Google Scholar 

  37. Hejazi B, Grace JR, Bi X, Mahecha-Botero A (2017) Kinetic model of steam gasification of biomass in a bubbling fluidized bed reactor. Energy Fuels 31(2):1702–1711. https://doi.org/10.1021/acs.energyfuels.6b03161

    Article  Google Scholar 

  38. Zheng H, Vance MR (2014) An unsteady-state two-phase kinetic model for corn stover fluidized bed steam gasification process. Fuel Process Technol 124:11–20. https://doi.org/10.1016/j.fuproc.2014.02.010

    Article  Google Scholar 

  39. Xiang X, Gong G, Shen Y, Wang C, Shi Y (2019) A comprehensive mathematical model of a serial composite process for biomass and coal Co-gasification. Int J Hydrogen Energy 44(5):2603–2619. https://doi.org/10.1016/j.ijhydene.2018.12.077

    Article  Google Scholar 

  40. Arteaga-Pérez LE, Casas-Ledón Y, Pérez-Bermúdez R, Peralta LM, Dewulf J, Prins W (2013) Energy and exergy analysis of a sugar cane bagasse gasifier integrated to a solid oxide fuel cell based on a quasi-equilibrium approach. Chem Eng J 228:1121–1132. https://doi.org/10.1016/j.cej.2013.05.077

    Article  Google Scholar 

  41. Merrick D (1983) Mathematical models of the thermal decomposition of coal: 1. Evol Volatile Matter Fuel 62(5):534–539. https://doi.org/10.1016/0016-2361(83)90222-3

    Article  Google Scholar 

  42. Jarungthammachote S, Dutta A (2007) Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy 32(9):1660–1669. https://doi.org/10.1016/j.energy.2007.01.010

    Article  Google Scholar 

  43. Huang H-J, Ramaswamy S (2009) Modeling biomass gasification using thermodynamic equilibrium approach. Appl Biochem Biotechnol 154(1):14–25. https://doi.org/10.1007/s12010-008-8483-x

    Article  Google Scholar 

  44. Xiang X, Gong G, Shi Y, Cai Y, Wang C (2018) Thermodynamic modeling and analysis of a serial composite process for biomass and coal co-gasification. Renew Sustain Energy Rev 82:2768–2778. https://doi.org/10.1016/j.rser.2017.10.008

    Article  Google Scholar 

  45. Rakesh N, Dasappa S (2018) Analysis of tar obtained from hydrogen-rich syngas generated from a fixed bed downdraft biomass gasification system. Energy Convers Manage 167:134–146. https://doi.org/10.1016/j.enconman.2018.04.092

    Article  Google Scholar 

  46. Kunii D, Levenspiel O (1991) Fluidization engineering (Second Edition). Butterworth-Heinemann, Boston

    Google Scholar 

  47. Wen CY, Chen LH (1982) Fluidized bed freeboard phenomena: entrainment and elutriation. AIChE J 28(1):117–128

    Article  MathSciNet  Google Scholar 

  48. Do HT, Grace JR, Clift R (1972) Particle ejection and entrainment from fluidised beds. Powder Technol 6(4):195–200

    Article  Google Scholar 

  49. Wen CY, Yu YH (1966) A generalized method for predicting the minimum fluidization velocity. AIChE J 12(3):610–612

    Article  Google Scholar 

  50. Grace SPSJR (1981) Effect of bubble interaction on interphase mass transfer in gas fluidized beds. Chem Eng Sci 36(2):327–35

    Article  Google Scholar 

  51. Jin X, Lu J, Yang H, Liu Q, Yue G, Feng J (2001) Comprehensive mathematical model for coal combustion in a circulating fluidized bed combustor. J Tsinghua Univ 6(4):319–25

    Google Scholar 

  52. Berkowitz N (1985) The chemistry of coal, coal science and technology series, vol 7. Elsevier, Amsterdam. https://doi.org/10.1002/crat.2170210708

  53. Ku X, Li T, Løvås T (2014) Eulerian-Lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor. Energy Fuels 28:5184–5196. https://doi.org/10.1021/ef5010557

    Article  Google Scholar 

  54. Mahapatra NN (2016) Textile dyes. CRC Press, Boca Raton. https://doi.org/10.1201/9781420047509

  55. Sriramulu S, Sane S, Agarwal P, Mathews T (1996) Mathematical modelling of fluidized bed combustion : 1. Combustion of carbon in bubbling beds. Fuel 75(12):1351–62

    Article  Google Scholar 

  56. Weimer AW, Clough DE (1981) Modeling a low pressure steam-oxygen fluidized bed coal gasifying reactor. Chem Eng Sci 36(3):548–567. https://doi.org/10.1016/0009-2509(81)80144-3

    Article  Google Scholar 

  57. Johnson LJ (1979) Kinetics of coal gasification. Wiley, United States

  58. Patumsawad S, Cliffe KR (2002) Experimental study on fluidised bed combustion of high moisture municipal solid waste. Energy Convers Manage 43(17):2329–2340. https://doi.org/10.1016/S0196-8904(01)00179-0

    Article  Google Scholar 

Download references

Acknowledgements

Through the research of this paper, a new path can be found for the direct gasification of high moisture solid waste.

Funding

This study is supported by the Natural Science Foundation of Hunan Province (2021JJ50154, 2021JJ30080, 2023JJ50342).

Author information

Authors and Affiliations

Authors

Contributions

All authors have been personally and actively involved in substantial work leading to the paper, and will take public responsibility for its content.

Corresponding author

Correspondence to Xianan Xiang.

Ethics declarations

Ethics approval

This paper is the authors’ own original work, which has not been previously published elsewhere. The paper is not currently being considered for publication elsewhere. This paper does not contain any data taken directly from any published article. This research did not contain any studies involving animal or human participants, nor did it take place on any private or protected areas.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Zhou, X., Wang, C. et al. Study on semi-empirical kinetic model of serial compound gasification process for high moisture solid waste. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04875-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04875-6

Keywords

Navigation