Skip to main content

Advertisement

Log in

Bio-conversion of Jamun leaf litter and kitchen waste into vermicompost: implications for Withania somnifera (L.) Dunal in vitro conservation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Proper disposal of accumulated leaf litter and kitchen waste has become a challenging problem. The aim of the present study was to use garden waste, Jamun leaf litter (JLL), and kitchen waste (KW) for preparation of vermicompost which was used for the conservation of Rare, Endangered and Threatened plant species, Withania somnifera. For this, JLL and KW were mixed with cattle dung (CD) in different proportions to produce three different feed mixtures (VCA1, VCA2, and VCA3) for vermicomposting using earthworm species Eisenia fetida. Composition of feed mixtures is as follows: VCA1-JLL (50%) + CD (50%), VCA2-JLL (25%) + KW (25%) + CD (50%), VCA3-KW (50%) + CD (50%). CD (100%) was used as control. Scanning electron microscopy and Fourier transmission infrared spectroscopy of initial feed mixtures and their final products (vermicompost) showed good maturity of vermicompost. Minimum mortality and maximum population size of worms were observed with VCA2 followed by VCA1. Nutrients like N, P, K, and Na increased while organic content and C:N ratio decreased in all the end products of vermicomposting. Heavy metal contents in vermicompost decreased significantly (P < 0.05) when compared with initial feed mixture. The effect of different concentrations (5, 10, and 15%) of vermicompost extracts on the seedling growth parameters of W. somnifera revealed that the seeds treated with VCA2 (10%) showed the best response with maximum seed germination response (95.55%), minimum germination time (3 days), and maximum shoot (3.3 cm) and root (3.8 cm) lengths.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the important data has been provided in the manuscript.

References

  1. Abbasi SA, Ramasamy EV (1999) Anaerobic digestion of high solid waste. In: Proceedings of 8th National Symposium on Environment (June 22–25, 1999), Indira Gandhi Centre for Atomic Research, Kalpakkam, India, pp 220–224

  2. Suthar S, Gairola S (2014) Nutrient recovery from urban forest leaf litter waste solids using Eisenia fetida. Ecol Eng 71:660–666. https://doi.org/10.1016/j.ecoleng.2014.08.010

    Article  Google Scholar 

  3. Wei Y, Wu D, Wei D, Zhao Y, Wu J, Xie X, Wei Z (2019) Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour Technol 271:66–74. https://doi.org/10.1016/j.biortech.2018.09.081

    Article  Google Scholar 

  4. Fornes F, Mendoza-Hernández D, García-de-la-Fuente R, Abad M, Belda RM (2012) Composting versus vermicomposting: a comparative study of organic matter evolution through straight and combined processes. Bioresour Technol 118:296–305. https://doi.org/10.1016/j.biortech.2012.05.028

    Article  Google Scholar 

  5. Atiyeh RM, Edwards CA, Subler S, Metzger JD (2001) Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresour Technol 78(1):11–20. https://doi.org/10.1016/S0960-8524(00)00172-3

    Article  Google Scholar 

  6. Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84(1):7–14. https://doi.org/10.1016/S0960-8524(02)00017-2

    Article  Google Scholar 

  7. Chaoui HI, Zibilske LM, Ohno T (2003) Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol Biochem 35(2):295–302. https://doi.org/10.1016/S0038-0717(02)00279-1

    Article  Google Scholar 

  8. Kashyap S, Kapoor N, Kale RD (2013) Effect of vermicompost on the regeneration of medicinal plant Bacopa monnieri (Linn). Int J Sci Res (IJSR) 2(3):418–423

    Google Scholar 

  9. Beyaz R, Türkay FŞH (2019) Use an organic biostimulant (vermicompost tea) for enhancement in vıtro callus growth in sainfoin (Onobrychis viciifolia Scop.). Turkish Journal of Agriculture-Food. Sci Technol 7(2):214–219. https://doi.org/10.24925/turjaf.v7i2.214-219.2202

    Article  Google Scholar 

  10. Chaudhuri PS, Paul TK, Dey A, Datta M, Dey SK (2016) Effects of rubber leaf litter vermicompost on earthworm population and yield of pineapple (Ananas comosus) in West Tripura, India. Int J Recycl Org Waste Agric 5:93–103. https://doi.org/10.1007/s40093-016-0120-z

    Article  Google Scholar 

  11. Maltaş AŞ, Tavalı IE, Uz I, Kaplan M (2017) Vermicompost application in red cabbage (Brassica oleracea var. capitata f. rubra) cultivation. Mediterr Agric Sci 30:155–161

    Google Scholar 

  12. Khan AA, Bibi H, Ali Z, Sharif M, Shah SA, Ibadullah H, Ali S (2017) Effect of compost and inorganic fertilizers on yield and quality of tomato. Acad J Agric Res 5(10): 287-293. https://doi.org/10.15413/ajar.2017.0135

  13. Prajapati VK, Swaroop N, Masih A, Lakra R (2018) Effect of different dose of NPK and vermicompost on growth and yield attributes of maize [Zea Mays (L.)] Cv. MM2255 J Pharmacogn Phytochem 7(1):2830–2832

    Google Scholar 

  14. Siva T, Serfoji P (2018) Studies on the application of vermicompost and bio-manure on growth and productivity of chilli plants (Capsicum annum) by pot culture method. Int J Curr Res Life Sci 7(03):1260–1263

    Google Scholar 

  15. Kumar A, Husain D, Lal RK, Singh S, Singh V, Gupta AK (2023) Genetic diversity and future prospects in Withania somnifera (L.) Dunal: an assessment based on quantitative traits in different accessions of Ashwagandha:1–9. https://doi.org/10.1007/s13237-023-00423-9

  16. Khabiya R, Choudhary GP, Jnanesha AC, Kumar A, Lal RK (2023) An insight into the potential varieties of Ashwagandha (Indian ginseng) for better therapeutic efficacy. Acta Ecol Sin. https://doi.org/10.1016/j.chnaes.2023.06.009

  17. Khanna PK, Kumar A, Chandra R, Verma V (2013) Germination behaviour of seeds of Withania somnifera (L.) Dunal: a high value medicinal plant. Physiol Mol Biol Plants 19:449–454. https://doi.org/10.1007/s12298-013-0169-3

    Article  Google Scholar 

  18. Niyaz A, Siddiqui EN (2014) Seed germination of Withania somnifera (L.) Dunal. European. J Med Plants 4(8):920

    Article  Google Scholar 

  19. Thakur A (2015) Revival of germination and vigour of aged seeds of Withania somnifera by seed invigoration treatments. Indian J Plant Physiol 20:391–395. https://doi.org/10.1007/s40502-015-0181-4

    Article  Google Scholar 

  20. Sapra NC, Kalyanrao P, Sasidharan N, Das A, Susmitha P (2020) Effect of mechanical, chemical, growth hormone and biofertilizer treatments on seed quality enhancement in Ashwagandha. Med Aromat Plants 9:2167–0412

    Google Scholar 

  21. Coolon JD, Jones KL, Todd TC, Blair JM, Herman MA (2013) Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie. PLoS One 8(6):e67884. https://doi.org/10.1371/journal.pone.0067884

    Article  Google Scholar 

  22. Ievinsh G, Vikmane M, Ķirse A, Karlsons A (2017) Effect of vermicompost extract and vermicompost-derived humic acids on seed germination and seedling growth of hemp. In Proceedings of the Latvian Academy of Sciences. Section B. Nat Exact Appl Sci 71(4):286–292. https://doi.org/10.1515/prolas-2017-0048

    Article  Google Scholar 

  23. Kaur A, Ohri P, Kaur A (2018a) Effect of Vermicompost extracts on in-vitro germination and growth of Withania somnifera (L.) Dunal. International. J Herbal Med 6(2):28–32

    Google Scholar 

  24. Kaur A, Singh B, Ohri P, Wang J, Wadhwa R, Kaul SC, Kaur A (2018b) Organic cultivation of Ashwagandha with improved biomass and high content of active Withanolides: Use of Vermicompost. PLoS One 13(4):e0194314. https://doi.org/10.1371/journal.pone.0194314

    Article  Google Scholar 

  25. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3. Chem Methods 5:961–1010. https://doi.org/10.2134/agronmonogr9.2.2ed.c29

    Article  Google Scholar 

  26. AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemists, Gaithersburg

    Google Scholar 

  27. John MK (1970) Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci 109(4):214–220

    Article  Google Scholar 

  28. Ravindran B, Sravani R, Mandal AB, Contreras-Ramos SM, Sekaran G (2013) Instrumental evidence for biodegradation of tannery waste during vermicomposting process using Eudrilus eugeniae. J Therm Anal Calorim 111:1675–1684. https://doi.org/10.1007/s10973-011-2081-9

    Article  Google Scholar 

  29. Piotrowska K, Connolly J, Finn J, Black A, Bolger T (2013) Evenness and plant species identity affect earthworm diversity and community structure in grassland soils. Soil Biol Biochem 57:713–719. https://doi.org/10.1016/j.soilbio.2012.06.016

    Article  Google Scholar 

  30. Zhi-Wei S, Tao S, Wen-Jing D, Jing W (2019) Investigation of rice straw and kitchen waste degradation through vermicomposting. J Environ Manag 243:269–272. https://doi.org/10.1016/j.jenvman.2019.04.126

    Article  Google Scholar 

  31. Yadav A, Suthar S, Garg VK (2015) Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry. Environ Sci Pollut Res 22:14702–14709. https://doi.org/10.1007/s11356-015-4672-7

    Article  Google Scholar 

  32. Balachandar R, Baskaran L, Yuvaraj A, Thangaraj R, Subbaiya R, Ravindran B, Karmegam N (2020) Enriched pressmud vermicompost production with green manure plants using Eudrilus eugeniae. Bioresour Technol 299:122578. https://doi.org/10.1016/j.biortech.2019.122578

    Article  Google Scholar 

  33. Gusain R, Suthar S (2020a) Vermicomposting of invasive weed Ageratum conyzoids: assessment of nutrient mineralization, enzymatic activities, and microbial properties. Bioresour Technol 312:123537. https://doi.org/10.1016/j.biortech.2020.123537

    Article  Google Scholar 

  34. Gusain R, Suthar S (2020b) Vermicomposting of duckweed (Spirodela polyrhiza) by employing Eisenia fetida: changes in nutrient contents, microbial enzyme activities and earthworm biodynamics. Bioresour Technol 311:123585. https://doi.org/10.1016/j.biortech.2020.123585

    Article  Google Scholar 

  35. Suthar S (2007) Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials. Bioresour Technol 98(6):1231–1237. https://doi.org/10.1016/j.biortech.2006.05.008

    Article  Google Scholar 

  36. Garg VK, Suthar S, Yadav A (2012) Management of food industry waste employing vermicomposting technology. Bioresour Technol 126:437–443. https://doi.org/10.1016/j.biortech.2011.11.116

    Article  Google Scholar 

  37. Fu X, Huang K, Chen X, Li F, Cui G (2015) Feasibility of vermistabilization for fresh pelletized dewatered sludge with earthworms Bimastus parvus. Bioresour Technol 175:646–650. https://doi.org/10.1016/j.biortech.2014.11.007

    Article  Google Scholar 

  38. Devi C, Khwairakpam M (2020) Feasibility of vermicomposting for the management of terrestrial weed Ageratum conyzoides using earthworm species Eisenia fetida. Environ Technol Innov 18:100696. https://doi.org/10.1016/j.eti.2020.100696

    Article  Google Scholar 

  39. Ahmed R, Deka H (2022) Vermicomposting of patchouli bagasse—a byproduct of essential oil industries employing Eisenia fetida. Environ Technol Innov 25:102232. https://doi.org/10.1016/j.eti.2021.102232

    Article  Google Scholar 

  40. Srivastava V, Goel G, Thakur VK, Singh RP, de Araujo ASF, Singh P (2020) Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment. J Environ Manag 255: 109914. https://doi.org/10.1016/j.jenvman.2019.109914

  41. Tognetti C, Laos F, Mazzarino MJ, Hernandez MT (2005) Composting vs. vermicomposting: a comparison of end product quality. Compost Sc Util 13(1):6–13. https://doi.org/10.1080/1065657X.2005.10702212

    Article  Google Scholar 

  42. Karmegam N, Daniel T (2009) Investigating efficiency of Lampito mauritii (Kinberg) and Perionyx ceylanensis Michaelsen for vermicomposting of different types of organic substrates. Environmentalist 29:287–300. https://doi.org/10.1007/s10669-008-9195-z

    Article  Google Scholar 

  43. Irshad M, Eneji AE, Hussain Z, Ashraf M (2013) Chemical characterization of fresh and composted livestock manures. J Soil Sci Plant Nutr 13(1):115–121. https://doi.org/10.4067/S0718-95162013005000011

    Article  Google Scholar 

  44. Svensson K, Friberg H (2007) Changes in active microbial biomass by earthworms and grass amendments in agricultural soil. Biol Fertil Soils 44:223–228. https://doi.org/10.1007/s00374-007-0200-3

    Article  Google Scholar 

  45. Suthar S, Singh S (2008) Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Sci Total Environ 394(2-3):237–243. https://doi.org/10.1016/j.scitotenv.2008.02.005

    Article  Google Scholar 

  46. Sharma K, Garg VK (2017) Management of food and vegetable processing waste spiked with buffalo waste using earthworms (Eisenia fetida). Environ Sci Pollut Res 24:7829–7836. https://doi.org/10.1007/s11356-017-8438-2

    Article  Google Scholar 

  47. Chauhan HK, Singh K (2013) Effect of tertiary combinations of animal dung with agrowastes on the growth and development of earthworm Eisenia fetida during organic waste management. Int J Recycl Org Waste Agric 2(1):1–7. https://doi.org/10.1186/2251-7715-2-11

    Article  MathSciNet  Google Scholar 

  48. Yuvaraj A, Thangaraj R, Maheswaran R (2019) Decomposition of poultry litter through vermicomposting using earthworm Drawida sulcata and its effect on plant growth. Int J Environ Sci Technol 16:7241–7254. https://doi.org/10.1007/s13762-018-2083-2

    Article  Google Scholar 

  49. Deepthi MP, Kathireswari P, Rini J, Saminathan K, Karmegam N (2021) Vermitransformation of monogastric Elephas maximus and ruminant Bos taurus excrements into vermicompost using Eudrilus eugeniae. Bioresour Technol 320:124302. https://doi.org/10.1016/j.biortech.2020.124302

    Article  Google Scholar 

  50. Karmegam N, Vijayan P, Prakash M, Paul JAJ (2019) Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: a viable option for cleaner and enriched vermicompost production. J Clean Prod 228:718–728. https://doi.org/10.1016/j.jclepro.2019.04.313

    Article  Google Scholar 

  51. Sharma K, Garg VK (2019) Recycling of lignocellulosic waste as vermicompost using earthworm Eisenia fetida. Environ Sci Pollut Res 26:14024–14035

    Article  Google Scholar 

  52. Soobhany N, Mohee R, Garg VK (2015) Recovery of nutrient from municipal solid waste by composting and vermicomposting using earthworm Eudrilus eugeniae. J Environ Chem Eng 3(4):2931–2942. https://doi.org/10.1016/j.jece.2015.10.025

    Article  Google Scholar 

  53. Adi AJ, Noor ZM (2009) Waste recycling: utilization of coffee grounds and kitchen waste in vermicomposting. Bioresour Technol 100(2):1027–1030. https://doi.org/10.1016/j.biortech.2008.07.024

    Article  Google Scholar 

  54. Badhwar VK, Singh C (2022) Vermicomposting of textile mill sludge employing Eisenia fetida: role of cow dung and tea waste amendments. Environ Sci Pollut Res 1-12. https://doi.org/10.1007/s11356-021-17185-z

  55. Azizi AB, Choy MY, Noor ZM, Noorlidah A (2015) Effect on heavy metals concentration from vermiconversion of agro-waste mixed with landfill leachate. Waste Manag 38:431–435. https://doi.org/10.1016/j.wasman.2015.01.020

    Article  Google Scholar 

  56. Maity S, Bhattacharya S, Chaudhury S (2009) Metallothionein response in earthworms Lampito mauritii (Kinberg) exposed to fly ash. Chemosphere 77(3):319–324. https://doi.org/10.1016/j.chemosphere.2009.07.011

    Article  Google Scholar 

  57. Shahmansouri MR, Pourmoghadas H, Parvaresh AR, Alidadi H (2005) Heavy metals bioaccumulation by Iranian and Australian earthworms (Eisenia fetida) in the sewage sludge vermicomposting. J Environ Health Sci Eng 2(1):28–32

    Google Scholar 

  58. Lim SL, Wu TY (2015) Determination of maturity in the vermicompost produced from palm oil mill effluent using spectroscopy, structural characterization and thermogravimetric analysis. Ecol Eng 84:515–519. https://doi.org/10.1016/j.ecoleng.2015.09.050

    Article  Google Scholar 

  59. Lim SL, Wu TY (2016) Characterization of matured vermicompost derived from valorization of palm oil mill byproduct. J Agric Food Chem 64(8):1761–1769. https://doi.org/10.1021/acs.jafc.6b00531

    Article  Google Scholar 

  60. Pandit L, Sethi D, Pattanayak SK, Nayak Y (2020) Bioconversion of lignocellulosic organic wastes into nutrient rich vermicompost by Eudrilus eugeniae. Bioresour Technol Rep 12:100580. https://doi.org/10.1016/j.biteb.2020.100580

    Article  Google Scholar 

  61. Wang YQ, Schuchardt F, Sheng FL, Zhang RZ, Cao ZY (2004) Assessment of maturity of vineyard pruning compost by Fourier transform infrared spectroscopy, biological and chemical analyses. Landbauforsch Volkenrode 54(3):163–169

    Google Scholar 

  62. Deka H, Deka S, Baruah CK, Das J, Hoque S, Sarma H, Sarma NS (2011) Vermicomposting potentiality of Perionyx excavatus for recycling of waste biomass of java citronella-an aromatic oil yielding plant. Bioresour Technol 102(24):11212–11217. https://doi.org/10.1016/j.biortech.2011.09.102

    Article  Google Scholar 

  63. Mago M, Gupta R, Yadav A, Garg VK (2022) Sustainable treatment and nutrient recovery from leafy waste through vermicomposting. Bioresour Technol 347:126390. https://doi.org/10.1016/j.biortech.2021.126390

    Article  Google Scholar 

  64. Lazcano C, Sampedro L, Zas R, Domínguez J (2010) Vermicompost enhances germination of the maritime pine (Pinus pinaster Ait.). New For 39:387–400. https://doi.org/10.1007/s11056-009-9178-z

    Article  Google Scholar 

  65. Hilhorst HW, Karssen CM (2000) Effect of chemical environment on seed germination. In: Seeds: the Ecology of Regeneration in Plant Communities. CABI, Wallingford UK, pp 293–309. https://doi.org/10.1079/9780851994321.0293

    Chapter  Google Scholar 

  66. Arancon NQ, Edwards CA, Babenko A, Cannon J, Galvis P, Metzger JD (2008) Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Appl Soil Ecol 39(1):91–99. https://doi.org/10.1016/j.apsoil.2007.11.010

    Article  Google Scholar 

  67. Hopkins WG (2004) NPA Huner Introduction to plant physiology, vol 3. John Willey & sons Inc USA, pp 17–27

    Google Scholar 

  68. Tomati U, Grappelli A, Galli E (1988) The hormone-like effect of earthworm casts on plant growth. Biol Fertil Soils 5:288–294. https://doi.org/10.1007/BF00262133

    Article  Google Scholar 

  69. Siddiqui Y, Meon S, Ismail MR, Ali A (2008) Trichoderma-fortified compost extracts for the control of choanephora wet rot in okra production. Crop Prot 27(3-5):385–390. https://doi.org/10.1016/j.cropro.2007.07.002

    Article  Google Scholar 

  70. Aslam Z, Ahmad A (2020) Effects of vermicompost, vermi-tea and chemical fertilizer on morpho-physiological characteristics of maize (Zea mays L.) in Suleymanpasa District, Tekirdag of Turkey. Journal of Innovative. Sciences 6(1):41–46. https://doi.org/10.17582/journal.jis/2020/6.1.41.46

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to University Grants Commission, New Delhi, and the Department of Science and Technology, New Delhi, for various programs like DRS and DST-FIST. Thanks are due to Central facility and Emerging Life Sciences, Guru Nanak Dev University, Amritsar (Punjab), for providing necessary laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

Anamika Sharma: visualization; conceptualization; methodology; writing—original draft; review and editing. Savita: writing—review and editing. Nitika Sharma, Sonali, Satveer Singh, and Rahil—methodology. Adarsh Pal Vig: supervision and resources. Avinash Kaur Nagpal: conceptualization, supervision, resources, writing—review and editing.

Corresponding author

Correspondence to Avinash Kaur Nagpal.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Savita, S., Sonali, S. et al. Bio-conversion of Jamun leaf litter and kitchen waste into vermicompost: implications for Withania somnifera (L.) Dunal in vitro conservation. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04830-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04830-5

Keywords

Navigation