Skip to main content
Log in

Phyto-mediated synthesis of pure and cobalt-doped SnO2 nanoparticles for antimicrobial, antioxidant, and photocatalytic activities

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the present work, tin oxide nanoparticles doped with various concentrations of cobalt (0%, 3%, 5%, and 7%) have been synthesized via cost effective green method using Annona muricata leaf extract for the first time. The obtained nanopowder was analyzed by various characterization techniques such as XRD, FTIR, XPS, HRTEM, SAED, SEM, EDX, and UV-Visible spectroscopy. The XRD pattern reveals cobalt ions are successfully incorporated into the tetragonal rutile structure of SnO2 with high phase purity. The stretching vibration of Sn-O has been confirmed through FTIR spectra. XPS measurement illustrates that Co2+ ions were effectively substituted by Sn4+ ions. Also, SEM and TEM micrograph of nanoparticles exhibit jasmine bud-like and spherical shape morphology. The presence of Sn, Co, and O in EDX spectra indicate purity of samples. Bandgap energy spectra shows as the dopant concentration increases, the optical band gap energy decreases. However, the obtained nanoparticles exhibit significant antimicrobial activity against S. aureus, P. aeruginosa, C. albicans, and A. niger. Moreover, SnO2 nanoparticles demonstrate significant antioxidant activity through DPPH-free radical scavenging. Also, the photocatalytic effect of SnO2 and Sn0.93Co0.07O2 nanoparticles shows effective degradation of methylene blue in the presence of sunlight irradiation. Hence, our results demonstrate that plant extract-mediated synthesis of pure and cobalt-doped SnO2 nanoparticles could be used for biomedical and waste water management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data available upon reasonable request from authors.

References

  1. Sinha A, Sahu SK, Biswas S et al (2022) Green approach to synthesize MnxZn1-xO nanocomposite with enhanced photocatalytic, fluorescence and antibacterial activity. Curr Res Green Sustain Chem 5:100244. https://doi.org/10.1016/j.crgsc.2021.100244

    Article  Google Scholar 

  2. Haritha E, Mohana S, Madhavi G et al (2016) Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies. J Photochem Photobiol, B : Biol 162:441–447. https://doi.org/10.1016/j.jphotobiol.2016.07.010

    Article  Google Scholar 

  3. Alam MW, Aamir M, Farhan M et al (2021) Green synthesis of Ni-Cu-Zn based nanosized metal oxides for photocatalytic and sensor applications. Crystals 11:1467

    Article  Google Scholar 

  4. Godlaveeti SK, Somala AR, Sana SS et al (2021) Evaluation of pH effect of tin oxide (SnO2) nanoparticles on photocatalytic degradation, dielectric and supercapacitor applications. J Clust Sci 7. https://doi.org/10.1007/s10876-021-02092-7

  5. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551. https://doi.org/10.1016/j.rser.2017.08.020

    Article  Google Scholar 

  6. Manjula N, Balu GSAR (2018) Improved photodegradation activity of ­ SnO2 nanopowder against methyl orange dye through Ag doping. J Mater Sci Mater Electron 29:3657–3664. https://doi.org/10.1007/s10854-017-8296-1

    Article  Google Scholar 

  7. Basavarajappa PS, Patil SB, Ganganagappa N et al (2019) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrogen Energy. 45:7764–7778. https://doi.org/10.1016/J.IJHYDENE.2019.07.241

    Article  Google Scholar 

  8. Shkir M, Palanivel B, Khan A et al (2022) Enhanced photocatalytic activities of facile auto-combustion synthesized ZnO nanoparticles for wastewater treatment: an impact of Ni doping. Chemosphere 291:132687. https://doi.org/10.1016/j.chemosphere.2021.132687

    Article  Google Scholar 

  9. Sareen D, Garg R, Grover N (2014) A study on removal of methylene blue dye from waste water by adsorption technique using fly ash briquette. Int J Eng Res Technol 3:610–613

    Google Scholar 

  10. Sivasubramanian V (2016) Environmental sustainability using green technologies. CRC Press

    Book  Google Scholar 

  11. Xu C, Cao L, Su G et al (2010) Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J Alloys Compd 497:373–376. https://doi.org/10.1016/j.jallcom.2010.03.076

    Article  Google Scholar 

  12. Shaban M, Elwahab FA, Ghitas AE, El Zayat MY (2020) Efficient and recyclable photocatalytic degradation of methylene blue dye in aqueous solutions using nanostructured Cd1−xCoxS films of different doping levels. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-020-05331-x

    Article  Google Scholar 

  13. Qi K, Xing X, Zada A et al (2020) Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: experimental and DFT studies. Ceram Int 46:1494–1502. https://doi.org/10.1016/j.ceramint.2019.09.116

    Article  Google Scholar 

  14. Vindhya PS, Kavitha VT (2023) A comprehensive study on photocatalytic, antimicrobial, antioxidant and cytotoxicity effects of biosynthesized pure and Ni doped CuO nanoparticles. Inorg Chem Commun 150:110472. https://doi.org/10.1016/j.inoche.2023.110472

    Article  Google Scholar 

  15. Shah BA, Yuan B (2021) Boost antimicrobial effect of CTAB-capped NixCu12xO (0.0 < x <0.05) nanoparticles by reformed optical and dielectric characters. J Mater Sci 56:13291–13312. https://doi.org/10.1007/s10853-021-06130-7

    Article  Google Scholar 

  16. Pragathiswaran C, Smitha C, Barabadi H et al (2020) TiO2@ZnO nanocomposites decorated with gold nanoparticles: synthesis, characterization and their antifungal, antibacterial, anti-inflammatory and anticancer activities. Inorg Chem Commun 121:108210. https://doi.org/10.1016/j.inoche.2020.108210

    Article  Google Scholar 

  17. Chaudhary V, Rustagi S, Kaushik A (2023) Bio-derived smart nanostructures for efficient biosensors. Curr Opin Green Sustain Chem 42:100817. https://doi.org/10.1016/j.cogsc.2023.100817

    Article  Google Scholar 

  18. Al-radadi NS, Faisal S, Alotaibi A, Ullah R (2022) Zingiber officinale driven bioproduction of ZnO nanoparticles and their. Inorg Chem Commun 140:109274. https://doi.org/10.1016/j.inoche.2022.109274

    Article  Google Scholar 

  19. Vindhya PS, Kunjikannan R, Kavitha VT (2022) Photocatalytic and antimicrobial activities of pure and Mn doped ZnO nanoparticles synthesised by Annona Muricata leaf extract. Int J Environ Anal Chem 1–16. https://doi.org/10.1080/03067319.2022.2118581

  20. Cho MH et al (2020) Effect of Ni-doping on properties of the SnO2 synthesized using Tradescantia spathacea for photoantioxidant studies. Mater Chem Phys 252:123293

    Article  Google Scholar 

  21. Chaudhary V, Chowdhury R, Thukral P, Pathania D (2023) Biogenic green metal nano systems as efficient anti-cancer agents Vishal. Environ Res 229:115933. https://doi.org/10.1016/j.envres.2023.115933

    Article  Google Scholar 

  22. Pereira MS, Lima FAS, Silva CB et al (2017) Structural, morphological and optical properties of SnO2 nanoparticles obtained by a proteic sol–gel method and their application in dye-sensitized solar cells. J Sol-Gel Sci Technol 84:206–213. https://doi.org/10.1007/s10971-017-4488-7

    Article  Google Scholar 

  23. Vasantharaj S, Shivakumar P, Sathiyavimal S et al (2021) Antibacterial activity and photocatalytic dye degradation of copper oxide nanoparticles (CuONPs) using Justicia gendarussa. Appl Nanosci. https://doi.org/10.1007/s13204-021-01939-9

    Article  Google Scholar 

  24. Pathania D, Sharma M, Thakur P, Chaudhary V (2022) Exploring phytochemical composition, photocatalytic, antibacterial, and antifungal efficacies of Au NPs supported by Cymbopogon flexuosus essential oil. Sci Rep 1–15. https://doi.org/10.1038/s41598-022-15899-9

  25. Ahmad N, Khan S (2017) Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J Alloys Compd. 720:502–509. https://doi.org/10.1016/j.jallcom.2017.05.293

    Article  Google Scholar 

  26. Shahid S, Sarwar MN (2017) Synthesis characterization, optical and antibacterial studies of Co - doped SnO2 nanoparticles. Digest J Nanomater Biostruct 12(4):1127–1135

    Google Scholar 

  27. Vindhya PS, Jeyasingh T, Kavitha VT (2019) Dielectric properties of zinc oxide nanoparticles using annona muricata leaf. AIP Conf Proc 2082:080005. https://doi.org/10.1063/1.5093888

    Article  Google Scholar 

  28. Matussin SN, Harunsani MH, Tan AL et al (2020) Photoantioxidant studies of SnO2 nanoparticles fabricated using aqueous leaf extract of Tradescantia spathacea. Solid State Sci 105:1062779. https://doi.org/10.1016/j.solidstatesciences.2020.106279

    Article  Google Scholar 

  29. Gebreslassie YT, Gebretnsae HG (2021) Green and cost - effective synthesis of tin oxide nanoparticles : a review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res Lett. 16:97. https://doi.org/10.1186/s11671-021-03555-6

    Article  Google Scholar 

  30. Velidandi A, Pabbathi NPP, Dahariya S, Baadhe RR (2020) Catalytic and eco-toxicity investigations of bio-fabricated monometallic nanoparticles along with their anti-bacterial, anti-inflammatory, anti-diabetic, anti-oxidative and anti-cancer potentials. Colloids Interface Sci Commun 38:100302. https://doi.org/10.1016/j.colcom.2020.100302

    Article  Google Scholar 

  31. Coria-Téllez AV, Montalvo-Gónzalez E, Yahia EM, Obledo-Vázquez EN (2018) Annona muricata: a comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab J Chem 11:662–691. https://doi.org/10.1016/j.arabjc.2016.01.004

    Article  Google Scholar 

  32. Vindhya PS, Jeyasingh T, Kavitha VT (2019) Dielectric properties of copper oxide nanoparticles using AnnonaMuricata leaf. AIP Conf Proc. 2162:020021

    Article  Google Scholar 

  33. Nanoparticles S (2022) A combinatorial approach towards antibacterial and antioxidant activity using tartaric acid capped silver nanoparticles. Processes 10:716

    Article  Google Scholar 

  34. Matussin S, Harunsani MH, Tan AL, Khan MM (2020) Plant extract-mediated SnO2 nanoparticles : synthesis and applications. ACS Sustainable Chem Eng 8:3040–3054. https://doi.org/10.1021/acssuschemeng.9b06398

    Article  Google Scholar 

  35. Ahmad N, Khan S, Mohsin M, Ansari N (2018) Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.06.024

    Article  Google Scholar 

  36. Ren S, Yang Y, Xu M et al (2014) Hollow SnO2 microspheres and their carbon-coated composites for supercapacitors. Colloids Surfaces A Physicochem Eng Asp 444:26–32. https://doi.org/10.1016/j.colsurfa.2013.12.028

    Article  Google Scholar 

  37. Vindhya PS, Kunjikannan R, Kavitha VT (2023) Bio-fabrication of Ni doped ZnO nanoparticles using Annona Muricata leaf extract and investigations of their antimicrobial, antioxidant and photocatalytic activities. Phys Scr 98:15830. https://doi.org/10.1088/1402-4896/acaa10

    Article  Google Scholar 

  38. Jahnavi VS, Kumar S, Rao AVNR (2019) Structural, optical, magnetic and dielectric studies of SnO2 nano particles in real time applications. Phys B Phys Condens Matter 565:61–72. https://doi.org/10.1016/j.physb.2019.04.020

    Article  Google Scholar 

  39. Dupraz M, Beutier G, Rodney D (2015) Signature of dislocations and stacking faults of face- centred cubic nanocrystals in coherent X-ray diffraction patterns : a numerical study research papers. 621–644. https://doi.org/10.1107/S1600576715005324

  40. Najihah S, Hilni M, Ling A, Mohammad A (2020) Photoantioxidant studies of SnO 2 nanoparticles fabricated using aqueous leaf extract of Tradescantia spathacea. Solid State Sci 105:106279. https://doi.org/10.1016/j.solidstatesciences.2020.106279

    Article  Google Scholar 

  41. Azam A (2011) Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J Luminesence 131:1–6. https://doi.org/10.1016/j.jlumin.2010.07.017

    Article  Google Scholar 

  42. Gnanamozhi P, Renganathan V, Chen SM et al (2020) Influence of nickel concentration on the photocatalytic dye degradation (methylene blue and reactive red 120) and antibacterial activity of ZnO nanoparticles. Ceram Int 46:18322–18330. https://doi.org/10.1016/j.ceramint.2020.05.054

    Article  Google Scholar 

  43. Bouazizi N, Bargougui R, Oueslati A, Benslama R (2015) Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv Mater Lett 6:158–164. https://doi.org/10.5185/amlett.2015.5656

    Article  Google Scholar 

  44. Muthuvel A, Jothibas M, Manoharan C (2020) Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. J Environ Chem Eng 8:103705. https://doi.org/10.1016/j.jece.2020.103705

    Article  Google Scholar 

  45. Alkasir M, Samadi N, Sabouri Z et al (2020) Evaluation cytotoxicity effects of biosynthesized zinc oxide nanoparticles using aqueous Linum Usitatissimum extract and investigation of their photocatalytic activityackn. Inorg Chem Commun 119:108066. https://doi.org/10.1016/j.inoche.2020.108066

    Article  Google Scholar 

  46. Nasir H, Rahman N, Zulfiqar et al (2020) Variations in structural, optical, and dielectric properties of CuO nanostructures with thermal decomposition. J Mater Sci Mater Electron 31:10649–10656. https://doi.org/10.1007/s10854-020-03614-1

    Article  Google Scholar 

  47. Mamakhel A, Søndergaard M, Borup K, Brummerstedt B (2020) The Journal of Supercritical Fluids Continuous flow hydrothermal synthesis of rutile SnO 2 nanoparticles : exploration of pH and temperature effects. 166:1–8. https://doi.org/10.1016/j.supflu.2020.105029

  48. Khan R, Yuan Y, Iqbal Z, Yang J (2016) Variation of structural, optical, dielectric and magnetic properties of SnO2 nanoparticles. J Mater Sci Mater Electron. 28:4625–4636. https://doi.org/10.1007/s10854-016-6101-1

    Article  Google Scholar 

  49. Varshney D, Verma K (2012) Effect of stirring time on size and dielectric properties of SnO2 nanoparticles prepared by co-precipitation method. J Mol Struct. 1034:26–222. https://doi.org/10.1016/j.molstruc.2012.10.049

    Article  Google Scholar 

  50. Maaza M (2017) Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J Alloys Compd 681:561–570. https://doi.org/10.1016/j.jallcom.2016.04.200

    Article  Google Scholar 

  51. Li W, Wang G, Chen C et al (2017) Enhanced visible light photocatalytic activity of ZnO nanowires doped with Mn2+ and Co2+ ions. Nanomaterials 7:1–11. https://doi.org/10.3390/nano7010020

    Article  Google Scholar 

  52. Choudhury B, Choudhury A, Maidul Islam AKM et al (2011) Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co2 doped TiO2 nanoparticles. J Magn Magn Mater 323:440–446. https://doi.org/10.1016/j.jmmm.2010.09.043

    Article  Google Scholar 

  53. Yildiz A, Yurduguzel B, Kayhan B et al (2012) Electrical conduction properties of Co-doped ZnO nanocrystalline thin films. J Mater Sci Mater Electron 23:425–430. https://doi.org/10.1007/s10854-011-0498-3

    Article  Google Scholar 

  54. Azeez F, Al-Hetlani E, Arafa M et al (2018) The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-25673-5

    Article  Google Scholar 

  55. Blessi S, Manikandan A, Anand S et al (2021) Effect of zinc substitution on the physical and electrochemical properties of mesoporous SnO2 nanoparticles. Mater Chem Phys 273:125122. https://doi.org/10.1016/j.matchemphys.2021.125122

    Article  Google Scholar 

  56. Haseena S, Shanavas S, Duraimurugan J et al (2019) Investigation on photocatalytic and antibacterial ability of green treated copper oxide nanoparticles using Artabotrys Hexapetalus and Bambusa Vulgaris plant extract. Mater Res Express 6:125064. https://doi.org/10.1088/2053-1591/ab59a9

    Article  Google Scholar 

  57. Suthakaran S, Dhanapandian S, Krishnakumar N et al (2020) Surfactant-assisted hydrothermal synthesis of Zr doped SnO2 nanoparticles with photocatalytic and supercapacitor applications. Mater Sci Semicond Process 111:104982. https://doi.org/10.1016/j.mssp.2020.104982

    Article  Google Scholar 

  58. Dhinakar KG, Sundar SM (2017) Structural & optical properties of Co doped SnO2 nanoparticles synthesised by microwave assisted solvothermal method. Appl Phys 92–97. https://doi.org/10.9790/4861-17002039297

  59. Birajdar SD, Bhagwat VR, Shinde AB, Jadhav KM (2016) Effect of Co2+ ions on structural, morphological and optical properties of ZnO nanoparticles synthesized by sol-gel auto combustion method. Mater Sci Semicond Process 41:441–449. https://doi.org/10.1016/j.mssp.2015.10.002

    Article  Google Scholar 

  60. Kareem MA, Bello IT, Shittu HA et al (2022) Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles. Clean Mater 3:100041. https://doi.org/10.1016/j.clema.2022.100041

    Article  Google Scholar 

  61. Yasmeen S, Munawar T, Asghar M et al (2020) Synthesis and photocatalytic study of Zn0.90Co0.10O and Zn0.90Co0.05M0.05O (M = Ca, Ba, Cr, Pb) nanocrystals: Structural, optical and electrical investigations. J Mater Res Technol 9:4076–4096. https://doi.org/10.1016/j.jmrt.2020.02.034

    Article  Google Scholar 

  62. Yong X, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556. https://doi.org/10.2138/am-2000-0416

    Article  Google Scholar 

  63. Vindhya PS, Sandhya Suresh R, Kunjikannan VTK (2023) Antimicrobial, antioxidant, cytotoxicity and photocatalyticperformance of Co doped ZnO nanoparticles biosynthesized using Annona Muricata leaf extract. J Environ Heal Sci Eng. https://doi.org/10.1007/s40201-023-00851-4

    Article  Google Scholar 

  64. Pradeev raj K, Sadaiyandi K, Kennedy A, et al (2018) Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res Lett 13. https://doi.org/10.1186/s11671-018-2643-x

  65. Maruthapandi M, Saravanan A, Das P et al (2020) Antimicrobial activities of Zn-doped CuO microparticles decorated on polydopamine against sensitive and antibiotic-resistant bacteria. ACS Appl Polym Mater 12:5878–5888. https://doi.org/10.1021/acsapm.0c01104

    Article  Google Scholar 

  66. Vijayalakshmi RV, Kuppan R, Kumar PP (2020) Investigation on the impact of different stabilizing agents on structural, optical properties of Ag @ SnO2 core - shell nanoparticles and its biological applications. J Mol Liq 307:112951. https://doi.org/10.1016/j.molliq.2020.112951

    Article  Google Scholar 

  67. Vindhya PS, Kavitha VT (2021) Comparative study of antibacterial activity of zinc oxide and copper oxide nanoparticles synthesized by green method. AIP Conf Proc 2369:020195

    Article  Google Scholar 

  68. Khan MM, Harunsani MH, Tan AL et al (2020) Antibacterial studies of ZnO and Cu-doped ZnO nanoparticles synthesized using aqueous leaf extract of Stachytarpheta jamaicensis. Bionanoscience 10:1037–1048. https://doi.org/10.1007/s12668-020-00775-5

    Article  Google Scholar 

  69. Sathishkumar M, Geethalakshmi S (2019) Enhanced photocatalytic and antibacterial activity of Cu : SnO2 nanoparticles synthesized by microwave assisted method. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.08.246

    Article  Google Scholar 

  70. Vindhya PS, Kavitha VT (2023) Effect of cobalt doping on antimicrobial, antioxidant and photocatalytic activities of CuO nanoparticles. Mater Sci Eng B 289:116258. https://doi.org/10.1016/j.mseb.2022.116258

    Article  Google Scholar 

  71. Bhuyan T, Khanuja M (2015) A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J Nanoparticle Res 17:288. https://doi.org/10.1007/s11051-015-3093-3

    Article  Google Scholar 

  72. Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220. https://doi.org/10.1016/j.micpath.2018.01.027

    Article  Google Scholar 

  73. K. V, S. S, P. M, et al (2021) Ecofriendly green synthesis, characterization and biomedical applications of CuO nanoparticles synthesized using leaf extract of Capsicum frutescens. J Environ Chem Eng 9:106299. https://doi.org/10.1016/j.jece.2021.106299

  74. Al-Enazi NM, Ameen F, Alsamhary K et al (2021) Tin oxide nanoparticles (SnO2-NPs) synthesis using Galaxaura elongata and its anti-microbial and cytotoxicity study: a greenery approach. Appl Nanosci. https://doi.org/10.1007/s13204-021-01828-1

    Article  Google Scholar 

  75. Fatimah I, Purwiandono G, Hidayat H, Sagadevan S (2021) Flower-like SnO2 nanoparticle biofabrication using Pometia pinnata leaf extract and study on its photocatalytic and antibacterial activities. Nanomaterials. 11:1–17

    Article  Google Scholar 

  76. Cuong HN, Pansambal S, Ghotekar S et al (2022) New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: a review. Environ Res 203:111858. https://doi.org/10.1016/j.envres.2021.111858

    Article  Google Scholar 

  77. Nagvenkar AP, Gedanken A (2016) Cu0.89Zn0.11O, A new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl Mater Interfaces 8:22301–22308. https://doi.org/10.1021/acsami.6b05354

    Article  Google Scholar 

  78. Vindhya PS, Kavitha VT (2022) Leaf extract - mediated synthesis of Mn - doped CuO nanoparticles for antimicrobial, antioxidant and photocatalytic applications. Chem Pap. https://doi.org/10.1007/s11696-022-02631-0

    Article  Google Scholar 

  79. Al-Radadi NS (2022) Biogenic proficient synthesis of (Au-NPs) via aqueous extract of Red Dragon Pulp and seed oil: characterization, antioxidant, cytotoxic properties, anti-diabetic anti-inflammatory, anti-Alzheimer and their anti-proliferative potential against cancer cell. Saudi J Biol Sci 29:2836–2855. https://doi.org/10.1016/j.sjbs.2022.01.001

    Article  Google Scholar 

  80. Palajonnala B, Koppala S, Kar P et al (2022) Photocatalytic and antioxidant studies of bioinspired ZrO2 nanoparticles using agriculture waste durva grass aqueous extracts. J Hazard Mater Adv 7:100112. https://doi.org/10.1016/j.hazadv.2022.100112

    Article  Google Scholar 

  81. El-Borady OM, Ayat MS, Shabrawy MA, Millet P (2020) Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. Adv Powder Technol 31:4390–4400. https://doi.org/10.1016/j.apt.2020.09.017

    Article  Google Scholar 

  82. Din SU, Kiani SH, Haq S et al (2022) Bio-synthesized tin oxide nanoparticles: structural, optical, and biological studies. Crystals 12:614. https://doi.org/10.3390/cryst12050614

    Article  Google Scholar 

  83. Shamima Begum MAP (2018) Green synthesis of SnO2 quantum dots using Parkia speciosa Hassk pods extract for the evaluation of anti-oxidant and photocatalytic properties. J Photochem Photobiol B Biol. 184:44–53. https://doi.org/10.1016/j.jphotobiol.2018.04.041

    Article  Google Scholar 

  84. Hong G-B, Jiang C-J (2017) Synthesis of SnO2 nanoparticles using extracts from Litsea cubeba fruits. Mater Lett 194:164–167

    Article  Google Scholar 

  85. Gari MS, Narasaiah BP, Pandurengan A, Kumar B (2023) Synthesis and antioxidant activity of some novel 4 H - chromene derivatives catalysed by biogenic tin oxide nanoparticles. Biointerface Res Appl Chem 13:1–14

    Google Scholar 

  86. Sinha T, Ahmaruzzaman M, Adhikari PP, Bora R (2017) Green and environmentally sustainable fabrication of Ag-SnO2 nanocomposite and its multifunctional efficacy as photocatalyst and antibacterial and antioxidant agent. ACS Sustain Chem Eng 5:4645–4655. https://doi.org/10.1021/acssuschemeng.6b03114

    Article  Google Scholar 

  87. Vindhya PS, Kunjikannan R, Kavitha VT (2022) Photocatalytic and antimicrobial activities of pure and Mn doped ZnO nanoparticles synthesised by Annona muricata leaf extract. Int J Environ Anal Chem 00:1–16. https://doi.org/10.1080/03067319.2022.2118581

    Article  Google Scholar 

  88. Udayabhanu Nethravathi PC, Pavan Kumar MA et al (2015) Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties. Mater Sci Semicond Process 33:81–88. https://doi.org/10.1016/j.mssp.2015.01.034

    Article  Google Scholar 

  89. Bibi S, Ahmad A, Ali M et al (2021) Journal of environmental chemical engineering photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide (rGO) based metal oxides (rGO-Fe3O4/TiO2) nanocomposite under UV-visible light irradiation. J Environ Chem Eng 9:105580. https://doi.org/10.1016/j.jece.2021.105580

    Article  Google Scholar 

  90. Oseghe EO (2015) Synthesis of mesoporous Mn/TiO2 nanocomposites and investigating the photocatalytic properties in aqueous systems. Environ Sci Pollut Res 22:211–222. https://doi.org/10.1007/s11356-014-3356-z

    Article  Google Scholar 

  91. Bhattacharjee N, Som I, Saha R, Mondal S (2022) A critical review on novel eco-friendly green approach to synthesize zinc oxide nanoparticles for photocatalytic degradation of water pollutants. Int J Environ Anal Chem 00:1–28. https://doi.org/10.1080/03067319.2021.2022130

    Article  Google Scholar 

  92. Shabna S, Dhas SSJ, Biju CS (2023) Potential progress in SnO2 nanostructures for enhancing photocatalytic degradation of organic pollutants. Catal Commun 177:106642. https://doi.org/10.1016/j.catcom.2023.106642

    Article  Google Scholar 

  93. Pathak TK, Coetsee-Hugo E, Swart HC et al (2020) Preparation and characterization of Ce doped ZnO nanomaterial for photocatalytic and biological applications. Mater Sci Eng B Solid-State Mater Adv Technol 261:114780. https://doi.org/10.1016/j.mseb.2020.114780

    Article  Google Scholar 

  94. Isai KA, Shrivastava VS (2019) Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Appl Sci 1:1–11. https://doi.org/10.1007/s42452-019-1279-5

    Article  Google Scholar 

  95. Revathi V, Karthik K (2018) Microwave assisted CdO–ZnO–MgO nanocomposite and its photocatalytic and antibacterial studies. J Mater Sci Mater Electron 29:18519–18530. https://doi.org/10.1007/s10854-018-9968-1

    Article  Google Scholar 

  96. Subbiah R, Muthukumaran S, Raja V (2020) Biosynthesis, structural, photoluminescence and photocatalytic performance of Mn/Mg dual doped ZnO nanostructures using Ocimum tenuiflorum leaf extract. Optik (Stuttg) 208:164556. https://doi.org/10.1016/j.ijleo.2020.164556

    Article  Google Scholar 

  97. Baig A, Baig A, Rathinam V (2021) Ramya V (2021) Facile fabrication of Zn-doped SnO2 nanoparticles for enhanced photocatalytic dye degradation performance under visible light exposure. Adv Compos Hybrid Mater 4:114–126

    Article  Google Scholar 

  98. Nava O, Olivas A, Martínez-rosas ME et al (2021) Efficient sunlight and UV photocatalytic degradation of methyl orange, methylene blue and Rhodamine B, using Citrus × paradisi synthesized SnO2 semiconductor nanoparticles. Ceram Int 47:23861–23874. https://doi.org/10.1016/j.ceramint.2021.05.094

    Article  Google Scholar 

  99. Shittu HA, Adedokun O, Kareem MA et al (2023) Effect of low-doping concentration on silver-doped SnO2 and its photocatalytic applications. Biointerface Res Appl Chem 13:1–15

    Google Scholar 

  100. Nasir Z, Shakir M, Wahab R, et al (2016) Co-precipitation synthesis and characterization of Co doped SnO2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2016.10.057

  101. Vindhya PS, VTK (2023) Phyto ‑ synthesis of pure and Mn Doped ­ SnO2 nanoparticles : evaluation of antimicrobial, antioxidant and photocatalytic activities. J Inorg Organomet Polym Materhttps://doi.org/10.1007/s10904-023-02733-6

Download references

Acknowledgements

The authors are grateful to CLIF Kerala University, DST-SAIF Cochin for providing instrumentation facilities and to BIOGENIX Research Center, Thiruvananthapuram, to carry out antimicrobial and antioxidant activity studies.

Funding

The University of Kerala provided financial assistance for this study through the University Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Vindhya P S: conceptualization, methodology, data collection, analysis, and interpretation of data, writing original draft, reviewing. Kavitha V T: conceptualization, methodology, analysis and interpretation of data, validation, supervision, writing—reviewing and editing. All authors read and approved the final version of manuscript.

Corresponding author

Correspondence to V. T. Kavitha.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vindhya, P.S., Kavitha, V.T. Phyto-mediated synthesis of pure and cobalt-doped SnO2 nanoparticles for antimicrobial, antioxidant, and photocatalytic activities. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04548-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04548-4

Keywords

Navigation