Skip to main content
Log in

Biobutanol production by batch and fed-batch fermentations from the green coconut husk hydrolysate using C. beijerinckii ATCC 10132

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The present study evaluates the potential of green coconut fiber in the production of cellulosic butanol by ABE (acetone-butanol-ethanol) fermentation, using Clostridium beijerinckii ATCC 10132. Batch fermentation tests were carried out to investigate the influence of some nutrients (sources of nitrogen and mineral medium) in the supplementation of the enzymatic hydrolyzate of pretreated green coconut husks, as well as the effects of the initial concentration of sugars and the initial concentration of inoculum on the production of butanol among other fermentation products. The mode of conducting the process in a fed-batch was carried out to improve the yield and productivity of butanol. Using the enzymatic hydrolyzate obtained with 9 g/L of sugars (glucose + xylose), the ABE fermentation reached a yield of 0.53 g/g after 96 h, in which 3.4 g/L of butanol was obtained. The absence or insufficiency of some nutrients (minerals and phosphate buffer) resulted in low yields of ABE products, indicating the importance of adapting supplements to the chosen fermentation medium and the type of microorganism used. Fed-batch increased productivity in ABE fermentation (0.08 g/L.h for butanol). The results indicate that green coconut residues have energy potential and are low-cost raw materials for the biotechnological production of butanol, as an alternative and renewable product.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data and materials are available on request.

References

  1. Bispo MD, Schneider JK, Oliveira DS, Tomasini D, Maciel GPS, Schena T, Onorevoli B, Bjerk TR, Jacques RA, Krause LC, Caramao EB (2018) Production of activated biochar from coconut fiber for the removal of organic compounds from phenolic. J Environ Chem Eng 6(2):2743–2750

    Article  Google Scholar 

  2. FAO - Food and Agriculture Organization of the United Nations (2020) World Production. Available in: https://www.fao.org/faostat/en/#data/qcl. Accessed 13 Feb 2022

    Google Scholar 

  3. Padilha CEA, Nogueira CC, Oliveira Filho MA, Souza Júnior FC, Assis CF, Souza DFS, Oliveira JA, Santos ES (2019) Fractionation of green coconut fiber using sequential hydrothermal/alkaline pretreatments and amberlite XAD-7HP resin. J Environ Chem Eng 7(6):103474

    Article  Google Scholar 

  4. Nunes LA, Silva ML, Gerber JZ, Kalid RDA (2020) Waste green coconut shells: diagnosis of the disposal and applications for use in other products. J Clean Prod 255:120169

    Article  Google Scholar 

  5. Nogueira CC, Padilha CEA, Santos ES (2021) Enzymatic hydrolysis and simultaneous saccharification and fermentation of green coconut fiber under high concentrations of ethylene oxide-based polymers. Renew Energy 163:1536–1547

    Article  Google Scholar 

  6. Gonçalves FA, Ruiz HA, Nogueira CC, Santos ES, Teixeira JA, Macedo GR (2014) Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel 131:66–76

    Article  Google Scholar 

  7. Albuquerque ED, Torres FAG, Fernandes AAR, Fernandes PM (2016) Combined effects of high hydrostatic pressure and specific fungal cellulase improve coconut husk hydrolysis. Process Biochem 51(11):1767–1775

    Article  Google Scholar 

  8. Nogueira CC, Padilha CEA, Jesus AA, Souza DFS, Assis CF, Sousa Júnior FC, Santos ES (2019) Pressurized pre-treatment and simultaneous saccharification and fermentation with in situ detoxification to increase bioethanol production from green coconut fibers. Ind Crop Prod 130:259–266

    Article  Google Scholar 

  9. Ribeiro VT, Campolina AC, Costa WA, Padilha CEA, Costa Filho JDB, Leitão ALOS, Rocha JC, Santos ES (2022) Ethanol production from green coconut fiber using a sequential steam explosion and alkaline pretreatment. Biomass Convers Biorefin 1–11. https://doi.org/10.1007/s13399-022-03100-0

  10. Nanda S, Dalai AK, Kozinski JA (2014) Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion. Energy Sci Eng 2(3):138–148

    Article  Google Scholar 

  11. Sá LR, Cammarota MC, Ferreira-Leitão VS (2014) Produção de hidrogênio via fermentação anaeróbia-aspectos gerais e possibilidade de utilização de resíduos agroindustriais brasileiros. Química Nova 37:857–867

    Google Scholar 

  12. Nascimento RJA, Macedo GR, Santos ES, Oliveira JA (2017) Real time and in situ near-infrared spectroscopy (nirs) for quantitative monitoring of biomass, glucose, ethanol and glycerine concentrations in an alcoholic fermentations. Braz J Chem Eng 34(2):459–468

    Article  Google Scholar 

  13. Karakashev D, Zhang Y (2018) Bioenergy and biochemicals production from biomass and residual resources. Energies 11(8):2125

    Article  Google Scholar 

  14. Silva FL, Campos O, Santos DA, Magalhães ERB, Macedo GR, Santos ES (2018) Valorization of an agroextractive residue – Carnauba straw – for the production of bioethanol by simultaneous saccharification and fermentation (SSF). Renew Energy 127:661–669

    Article  Google Scholar 

  15. Vijayaraghavan K, Akshaya GM (2020) Conversion of lignocellulosic sugarcane bagasse waste into bioethanol using indigenous yeast strain. Biosci Biotechnol Res Asia 17(3):559–565

    Article  Google Scholar 

  16. Xue C, Zhao J, Chen L, Yang ST, Bai F (2017) Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol Adv 35(2):310–322

    Article  Google Scholar 

  17. Kolesinska B, Fraczyk J, Binczarski M, Modelska M, Berlowska J, Dziugan P, Antolak H, Kaminski ZJ, Witonska IA, Kregiel D (2019) Butanol synthesis routes for biofuel production: trends and perspectives. Materials 12(3):350

    Article  Google Scholar 

  18. Gomes AC, Rodrigues MI, Passos DF, Castro AM, Santa Anna LMM, Pereira N Jr (2019) Acetone–Butanol–Ethanol fermentation from sugarcane bagasse hydrolysates: utilization of C5 and C6 sugars. Electron J Biotechnol 42:16–22

    Article  Google Scholar 

  19. Zetty-Arenas AM, Alves RF, Portela CAF, Mariano AP, Basso TO, Tovar LP, Maciel Filho R, Freitas S (2019) Towards enhanced n-butanol production from sugarcane bagasse hemicellulosic hydrolysate: strain screening, and the effects of sugar concentration and butanol tolerance. Biomass Bioenergy 126:190–198

    Article  Google Scholar 

  20. Narayanasamy S, Chan KL, Cai H, Razak AHBA, Tay BK, Miao H (2020) Biobutanol production from sugarcane bagasse by Clostridium beijerinckii strains. Biotechnol Appl Biochem 67(5):732–737

    Article  Google Scholar 

  21. Zheng J, Tashiro Y, Wang Q, Sakai K, Sonomoto K (2015) Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation. Appl Energy 140:113–119

    Article  Google Scholar 

  22. Zheng J, Tashiro Y, Zhao T, Wang Q, Sakai K, Sonomoto K (2017) Enhancement of acetone-butanol-ethanol fermentation from eucalyptus hydrolysate with optimized nutrient supplementation through statistical experimental designs. Renew Energy 113:580–586

    Article  Google Scholar 

  23. Chen W-H, Chen Y-C, Lin J-G (2013) Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions. Bioresour Technol 135:262–268

    Article  Google Scholar 

  24. Kiyoshi K, Furukawa M, Seyama T, Kadokura T, Nakazato A, Nakayama S (2015) Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum. Bioresour Technol 186:325–328

    Article  Google Scholar 

  25. Qureshi N, Singh V, Liu S, Ezeji TC, Saha BC, Cotta MA (2014) Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260. Bioresour Technol 154:222–228

    Article  Google Scholar 

  26. Cai D, Chen C, Zhang C, Wang Y, Wen H, Qin P (2017) Fed-batch fermentation with intermittent gas stripping using immobilized Clostridium acetobutylicum for biobutanol production from corn stover bagasse hydrolysate. Biochem Eng J 125:18–22

    Article  Google Scholar 

  27. Lu C, Zhao J, Yang ST, Wei D (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol 104:380–387

    Article  Google Scholar 

  28. Huang J, Du Y, Bao T, Lin M, Wang J, Yang ST (2019) Production of n-butanol from cassava bagasse hydrolysate by engineered Clostridium tyrobutyricum overexpressing ADHE2: kinetics and cost analysis. Bioresour Technol 292:121969

    Article  Google Scholar 

  29. Jang YS, Malaviya A, Cho C, Lee J, Lee SY (2012) Butanol production from renewable biomass by clostridia. Bioresour Technol 123:653–663

    Article  Google Scholar 

  30. Yang M, Kuittinen S, Vepsäläinen J, Zhang J, Pappinen A (2017) Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement. Bioresour Technol 243(126-134):2017

    Google Scholar 

  31. Zhao T, Tashiro Y, Zheng J, Sakai K, Sonomoto K (2018) Semi-hydrolysis with low enzyme loading leads to highly effective butanol fermentation. Bioresour Technol 264:335–342

    Article  Google Scholar 

  32. Nogueira CC, Padilha CEA, Leitão ALS, Rocha PM, Macedo GR, Santos ES (2018) Enhancing enzymatic hydrolysis of green coconut fiber – pretreatment assisted by tween 80 and water effect on the post-washing. Ind Crop Prod 112:734–740

    Article  Google Scholar 

  33. Qureshi N, Blaschek H (1999) Butanol recovery from model solution/fermentation broth by pervaporation: evaluation of membrane performance. Biomass Bioenergy 17(2):175–184

    Article  Google Scholar 

  34. Al-Shorgani NKN, Kalil MS, Yusoff WMW, Hamid AA (2018) Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1. Saudi J Biol Sci 25(2):339–348

    Article  Google Scholar 

  35. Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008a) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I – Batch Fermentation. Biomass Bioenergy 32(2):168–175

    Article  Google Scholar 

  36. Qin Z, Duns GJ, Pan T, Xin F (2018) Consolidated processing of biobutanol production from food wastes by solventogenic Clostridium sp. strain HN4. Bioresour Technol 264:148–153

    Article  Google Scholar 

  37. Bezerra PKSB, Araújo BMC, Silva OL, Azevedo B, Matias SCB, Santos ES (2021) Influence of nickel on butanol production by Clostridium beijerinckii using hydrolyzate from green coconut shell. Rev Engenharia Agric 29:381–388

    Google Scholar 

  38. Qureshi N, Saha BC, Cotta MA (2008b) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part II – fed-batch fermentation. Biomass Bioenergy 32(2):176–183

    Article  Google Scholar 

  39. Darmayanti RF, Tashiro Y, Nogushi T, Gao M, Sakai K, Sonomoto K (2018) Novel biobutanol fermentation at a large extractant volume ratio using immobilized Clostridium saccaroperbutylacetonicum N1-4. J Biosci Bioeng 126(6):750–757

    Article  Google Scholar 

  40. Muharja M, Darmayanti RF, Frachi BA, Palupi B, Rahmawati I, Rizkiana MF, Hamini HW, Putri DKY, Setiawan FA, Asrofi M, Widjaja A, Halim A (2023) Biobutanol production from cocoa pod husk through a sequential green method: depectination, delignification, enzymatic hydrolysis, and extractive fermentation. Bioresour Technol Rep 21:101298

    Article  Google Scholar 

  41. Pugazhendhi A, Mathimani T, Varjani S, Rene ER, Kumar G, Kim SH, Ponnusamy VK, Yoon JJ (2019) Biobutanol as a promising liquid fuel for the future-recent updates and perspectives. Fuel 253:637–646

    Article  Google Scholar 

  42. Menchavez RN, Ha SH (2019) Fed-batch acetone-butanol-ethanol fermentation using immobilized Clostridium acetobutylicum in calcium alginate beads. Korean J Chem Eng 36(6):909–913

    Article  Google Scholar 

  43. Lépiz-Aguilar L, Rodríguez-Rodríguez CE, Arias ML, Lutz G (2013) Acetone-Butanol-Ethanol (ABE) production in fermentation of enzymatically hydrolyzed cassava flour by Clostridium beijerinckii BA101 and solvent separation. J Microbiol Biotechnol 23(8):1092–1098

    Article  Google Scholar 

  44. Visioli LJ, Alves FA, Trindade A, Kuhn RC, Schwaab M, Mazutti MA (2015) Evaluation of biobutanol production by Clostridium beijerinckii NRRL B-592 using sweet sorghum as carbon source. Ciência Rural 45(9):1707–1712

    Article  Google Scholar 

  45. Plaza PE, Gallego-Morales LJ, Peñuela-Vásquez M, Lucas S, García-Cubero MT, Coca M (2017) Biobutanol production from brewer’s spent grain hydrolysates by Clostridium beijerinckii. Bioresour Technol 244:166–174

    Article  Google Scholar 

  46. Ghose TK (1987) Measurement of cellulose activities. Pure Appl Chem 59(2):257–268

    Article  Google Scholar 

  47. Singh V, Singh H, Das D (2019) Optimization of the medium composition for the improvement of hydrogen and butanol production using Clostridium saccharoperbutylacetonicum DSM 14923. Int J Hydrog Energy 44(49):26905–26919

    Article  Google Scholar 

  48. Hamilton C, Calusinska M, Baptiste S, Masset J, Beckers L, Thonart P, Hiligsmass S (2018) Effect of the nitrogen source on the hydrogen production metabolism and hydrogenases of Clostridium Butyricum CWBI1009. Int J Hydrog Energy 43:5451–5462

    Article  Google Scholar 

  49. Benevenuti C, Botelho A, Ribeiro R, Branco M, Pereira A, Vieira AC, Ferreira T, Amaral P (2020) Experimental design to improve cell growth and ethanol production in syngas fermentation by Clostridium carboxidivorans. Catalysts 10:59

    Article  Google Scholar 

  50. Velázquez-Sánchez HI, Montes-Horcasitas MC, Aguilar-López R (2014) Development of a phenomenological kinetic model for butanol production using Clostridium beijerinckii. Rev Mex Ingeniería Quím 13:103–112

    Google Scholar 

  51. Pang ZW, Lu W, Zhang H, Liang ZW, Liang JJ, Du LW, Duan CJ, Feng JX (2016) Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS 7-2-4. Bioresour Technol 212:82–91

    Article  Google Scholar 

  52. Patakova P, Branska B, Sedlar K, Vasylkivska M, Jureckova K, Kolek J, Koskova P, Provaznik I (2019) Acidogenesis, solventogenesis, metabolic stress response and life cycle changes in Clostridium beijerinckii NRRL B-598 at the transcriptomic level. Sci Rep 9:1–21

    Article  Google Scholar 

  53. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30(6):419–427

    Article  Google Scholar 

  54. Branska B, Pechacova Z, Kolek J, Vasylkivska M, Patakova P (2018) Flow cytometry analysis of Clostridium beijerinckii NRRL B-598 populations exhibiting different phenotypes induced by changes in cultivation conditions. Biotechnol Biofuels 11:1–16

    Article  Google Scholar 

  55. Schmidell W, Lima UA, Aquarone E, Borzani W (2001) Biotecnologia Industrial: Engenharia Bioquímica Ed Edgard Blücher 2

  56. Masiero SS, Trierweiler LF, Trierweiler JO (2011) Produção de butanol por Clostridium acetobutylicum Seminário do Programa de Pós-Graduação em Engenharia Química (10.: 2011 out. 04-07: Porto Alegre, RS). Resumos e artigos [recurso eletrônico]. Porto Alegre, RS: UFRGS/EE/PPGEQ

    Google Scholar 

  57. Pratto B (2019) Estudo da produção de bioetanol e biobutanol a partir da palha de cana-de-açúcar. 138f. Tese (Doutorado em Engenharia Química) – Programa de Pós-Graduação em Engenharia Química. Universidade Federal de São Carlos, SP

    Google Scholar 

  58. Yusof SJHM, Takriff MS, Amir A, Kadhum H, Mohammad AW, Jahim J (2010) The effect of initial butyric acid addition on ABE fermentation by C. acetobutylicum NCIMB 619. J Appl Sci 10(21):2709–2712

    Article  Google Scholar 

  59. Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88(6):1999–2012

    Article  Google Scholar 

  60. Abo BO, Gao M, Wang Y, Wu C, Wang Q, Ma H (2019) Production of butanol from biomass: recent advances and future prospects. Environ Sci Pollut Res 26(20):20164–20182. https://doi.org/10.1007/s11356-019-05437-y

  61. Belgrano FS (2018) Modelo de Imobilização celular para produção de ácido propiônico: Tecnologia de impressão em 3D e o papel dos exopolissacarídeos na interação célula-matriz. 198f. In: Tese (Doutorado em Ciências) – Pós-Graduação em Engenharia de Processos Químicos e Bioquímicos. Universidade Federal do Rio de Janeiro, RJ

    Google Scholar 

  62. Brandão LFP (2017) Estudo do 1-Butanol e 2-Metil-1-propanol em misturas com a gasolina e o diesel: uma análise sob a perspectiva da especificação brasileira. 156f. Tese (Doutorado em Química) – Departamento de Engenharia Química, Programa de Pós-Graduação em Química. Universidade de Brasília, DF

    Google Scholar 

  63. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101(2):209–228

    Article  Google Scholar 

Download references

Acknowledgements

This study was developed in the Graduate Program in Chemical Engineering at the Federal University of Rio Grande do Norte (PPGEQ / UFRN), Brazil. The authors would like to thank the Federal University of Rio Grande do Norte (UFRN), especially the Biochemical Engineering Laboratory, for the physical space and infrastructure made available for carrying out the experiments, and the AquaCoco Industry for donating the green coconut husks.

Funding

Financial support is granted by the CAPES (Coordination for the Improvement of Higher Education Personnel – Finance code 001).

Author information

Authors and Affiliations

Authors

Contributions

Petrúcia Bezerra: conceptualization, methodology, data curation, writing—original draft preparation. Juliana Azevedo: visualization, reviewing, and editing. Everaldo Santos: writing—original draft preparation, funding acquisition, supervision writing.

Corresponding author

Correspondence to Everaldo Silvino dos Santos.

Ethics declarations

Ethics approval

This article does not contain any studies with humans or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Green coconut fiber was used to production of cellulosic butanol by ABE (acetone-butanol-ethanol) fermentation, using Clostridium beijerinckii ATCC 10132

• Fed-batch operation mode improved the yield and productivity of butanol

• The productivity of ABE fermentation reached 0.08 g/L.h for butanol in fed-batch

• Green coconut fiber is a low-cost residue for butanol production, an alternative, and renewable product

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Brito Bezerra, P.K.S., de Azevedo, J.C.S. & dos Santos, E.S. Biobutanol production by batch and fed-batch fermentations from the green coconut husk hydrolysate using C. beijerinckii ATCC 10132. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04537-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04537-7

Keywords

Navigation