Skip to main content

Advertisement

Log in

Physical & mechanical and chemical properties on papaya tree bast fibers from different portions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This paper aims to investigate the physical, mechanical, and chemical properties of papaya tree bast fibers (Carica papaya L) from different portions. Papaya bast fibers (PBFs) were extracted from the boiling process in three different portions of bast (PBF 1, PBF 2, and PBF 3). The physical properties of papaya bast fibers obtained were relative density 820–1130 kg/m3, count 14–22 Tex, diameter 600–767 µm, and wettability 78 to 86°. The mechanical properties were determined by strain (0.8–1.5%), tenacity (10.2–23.1 cN/Tex), tensile strength (4.4–7.8 MPa), Young's modulus (5.2–5.5 MPa) and specific modulus (5–6) through single fiber tensile test. Chemical properties were evaluated using FEG-SEM which showed a strong presence of cells in PBF 1, PBF 2, and PBF 3. FTIR and X-ray analysis proved that PBFs are rich in cellulose with a crystallinity index of 59.2%—67% of PBF 1 to PBF 3. The results revealed variations in the physical, mechanical, and chemical properties of PBFs among different portions. The papaya bast fibers showed properties, such as lightweight, porous, and mechanical properties, which are similar to other bast fibers, which are usually used in the manufacture of composites and applied in the packaging (food industry). In conclusion, this study provides valuable insights into the physical, mechanical, and chemical properties of papaya bast fibers from different portions. These findings contribute to the understanding of the potential applications of papaya bast fibers and serve as a foundation for future research and development in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not Applicable.

References

  1. Ahmed S, Ulven C (2018) Dynamic in-situ observation on the failure mechanism of flax fiber through scanning electron microscopy. Fibers 6:17. https://doi.org/10.3390/fib6010017

    Article  Google Scholar 

  2. Alcock M, Ahmed S, Ducharme S, Ulven CA (2018) Influence of stem diameter on fiber diameter and the mechanical properties of technical flax fibers from linseed flax. Fibers 6:1–16

    Article  Google Scholar 

  3. Alves C, Silva A, Reis L et al (2011) Sustainable design of automotive components through jute fiber composites: an integrated approach. In: New trends and developments in automotive industry. InTech, pp 223–254. https://doi.org/10.5772/12876https://www.intechopen.com/chapters/13337

  4. Alves Fidelis ME, Pereira TVC, da Fonseca Martins Gomes O et al (2013) The effect of fiber morphology on the tensile strength of natural fibers. J Mater Res Technol 2:149–157. https://doi.org/10.1016/j.jmrt.2013.02.003

    Article  Google Scholar 

  5. Ariawan D, MohdIshak ZA, Salim MS et al (2017) Wettability and interfacial characterization of alkaline treated kenaf fiber-unsaturated polyester composites fabricated by resin transfer molding. Polym Compos 38:507–515. https://doi.org/10.1002/pc.23609

    Article  Google Scholar 

  6. Arthanarieswaran VP, Kumaravel A, Saravanakumar SS (2015) Characterization of new natural cellulosic fiber from Acacia leucophloea Bark. Int J Polym Anal Charact 20:367–376. https://doi.org/10.1080/1023666X.2015.1018737

    Article  Google Scholar 

  7. Ashraf MA, Zwawi M, Taqi Mehran M et al (2019) Jute based bio and hybrid composites and their applications. Fibers 7:77. https://doi.org/10.3390/fib7090077

    Article  Google Scholar 

  8. ASTM (2018) ASTM D1577-07 - Standard Test Methods for Linear Density of Textile Fibers. https://doi.org/10.1520/D1577-07R18

  9. ASTM D3822 / D3822M - 14(2020) Standard Test Method for Tensile Properties of Single Textile Fibers. West Conshohocken, PA. https://doi.org/10.1520/D3822_D3822M-14

  10. Atmakuri A, Palevicius A, Siddabathula M et al (2020) Analysis of mechanical and wettability properties of natural fiber-reinforced epoxy hybrid composites. Polymers (Basel) 12:1–15. https://doi.org/10.3390/POLYM12122827

    Article  Google Scholar 

  11. Bacci L, Baronti S, Predieri S, di Virgilio N (2009) Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Ind Crops Prod 29:480–484. https://doi.org/10.1016/j.indcrop.2008.09.005

    Article  Google Scholar 

  12. Bacci L, Di Lonardo S, Albanese L et al (2011) Effect of different extraction methods on fiber quality of nettle (Urtica dioica L.). Text Res J 81:827–837. https://doi.org/10.1177/0040517510391698

    Article  Google Scholar 

  13. Banerjee P, Ray DP, Satya P et al (2015) Evaluation of Ramie fibre quality: a review. Int J Bioresour Sci 2:65–69

    Google Scholar 

  14. Begum K, Islam MA (2013) Natural fiber as a substitute to synthetic fiber in polymer composites: a review. Res J Engineering Sci 2(3):46–53. http://www.isca.me/IJES/Archive/v2/i4/10.ISCA-RJEngS-2013-010.php

  15. Belouadah Z, Ati A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr Polym 134:429–437. https://doi.org/10.1016/j.carbpol.2015.08.024

    Article  Google Scholar 

  16. Benin SR, Kannan S, Bright RJ, Jacob Moses A (2020) A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres. Mater Today Proc 33:798–805. https://doi.org/10.1016/j.matpr.2020.06.259

    Article  Google Scholar 

  17. Bodros E, Baley C (2008) Study of the tensile properties of stinging nettle fibres (Urtica dioica). Mater Lett 62:2143–2145. https://doi.org/10.1016/j.matlet.2007.11.034

    Article  Google Scholar 

  18. Bunsell AR, Joannès S, Marcellan A (2018) Testing and characterization of fibers. In: Handbook of Properties of Textile and Technical Fibres. Elsevier, pp 21–55

  19. Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol 63:1247–1254. https://doi.org/10.1016/S0266-3538(03)00094-0

    Article  Google Scholar 

  20. Carolino A de S (2017) Estimativa do percentual de cristalinidade de polímeros semicristalinos derivados da anilina através dos padrões de difração de raios-x. UFAM. https://tede.ufam.edu.br/handle/tede/5624

  21. Chand N, Fahim M (2021) Natural fibers and their composites. In: Tribology of Natural Fiber Polymer Composites, Second Edi. Woodhead Publishing, pp 1–59. https://doi.org/10.1533/9781845695057.1

  22. Coura GLC, Freire RTS, dos Santos JC et al (2020) Tensile and flexural properties of epoxy laminates with natural papaya bast fibre cellular layers. Compos Part C Open Access 2:100017. https://doi.org/10.1016/j.jcomc.2020.100017

    Article  Google Scholar 

  23. De Rosa IM, Kenny JM, Puglia D et al (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122. https://doi.org/10.1016/j.compscitech.2009.09.013

    Article  Google Scholar 

  24. Duprat C, Protière S, Beebe AY, Stone HA (2012) Wetting of flexible fibre arrays. Nature 482:510–513. https://doi.org/10.1038/nature10779

    Article  Google Scholar 

  25. ErjolaReufi, IlirjanaBoci (2016) Optical microscopic characterization of polypropylene and steel fiber reinforced concrete at evaluated temperatures. J Multidiscip Eng Sci Technol 3:4747–4752

    Google Scholar 

  26. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  Google Scholar 

  27. Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr Polym 106:77–83. https://doi.org/10.1016/j.carbpol.2014.02.016

    Article  Google Scholar 

  28. Fouladi MH, Nassir MH, Ghassem M et al (2016) Utilizing Malaysian natural fibers as sound absorber. In: Modeling and Measurement Methods for Acoustic Waves and for acoustic microdevices. https://doi.org/10.5772/53197

  29. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  Google Scholar 

  30. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

    Article  Google Scholar 

  31. Gangil B, Ranakoti L, Verma S, Singh T, Kumar S (2020) Natural and synthetic fibers for hybrid composites. In Khan A, Rangappa SM, Jawaid M, Siengchin S, Asiri AM (eds) Hybrid Fiber Composites. https://doi.org/10.1002/9783527824571.ch1

  32. Grégoire M, Bar M, De Luycker E et al (2021) Comparing flax and hemp fibres yield and mechanical properties after scutching/hackling processing. Ind Crops Prod 172:114045. https://doi.org/10.1016/j.indcrop.2021.114045

    Article  Google Scholar 

  33. Gudayu AD, Steuernagel L, Meiners D, Gideon R (2022) Effect of surface treatment on moisture absorption, thermal, and mechanical properties of sisal fiber. J Ind Text 51:2853S-2873S. https://doi.org/10.1177/1528083720924774

    Article  Google Scholar 

  34. Hamidon MH, Sultan MTH, Ariffin AH, Shah AUM (2019) Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: a review. J Mater Res Technol 8:3327–3337. https://doi.org/10.1016/j.jmrt.2019.04.012

    Article  Google Scholar 

  35. Hong S, Minary-Jolandan M, Naraghi M (2015) Controlling the wettability and adhesion of carbon fibers with polymer interfaces via grafted nanofibers. Compos Sci Technol 117:130–138. https://doi.org/10.1016/J.COMPSCITECH.2015.06.008

    Article  Google Scholar 

  36. Hsissou R, Seghiri R, Benzekri Z et al (2021) Polymer composite materials: A comprehensive review. Compos Struct 262:113640. https://doi.org/10.1016/j.compstruct.2021.113640

    Article  Google Scholar 

  37. Indran S, Raj RE (2015) Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr Polym 117:392–399. https://doi.org/10.1016/j.carbpol.2014.09.072

    Article  Google Scholar 

  38. Jayaramudu J, Guduri BR, VaradaRajulu A (2010) Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydr Polym 79:847–851. https://doi.org/10.1016/j.carbpol.2009.10.046

    Article  Google Scholar 

  39. Joseph K, Dias R, Filho T et al (1999) A review on sisal fiber reinforced polymer composites. Rev Bras Eng Agrícola e Ambient 3:367–379. https://doi.org/10.1590/1807-1929/AGRIAMBI.V3N3P367-379

    Article  Google Scholar 

  40. Karimah A, Ridho MR, Munawar SS et al (2021) A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. J Mater Res Technol 13:2442–2458. https://doi.org/10.1016/j.jmrt.2021.06.014

    Article  Google Scholar 

  41. Kempe A, Göhre A, Lautenschläger T, Rudolf A, Eder M, Neinhuis C (2015) Evaluation of bast fibres of the stem of carica papaya L. for application as reinforcing material in green composites. Annu Res Rev Biol 6(4):245–252. https://doi.org/10.9734/ARRB/2015/15407

  42. Kempe A, Lautenschläger T, Lange A, Neinhuis C (2014) How to become a tree without wood - biomechanical analysis of the stem of Carica papaya L. Plant Biol 16:264–271. https://doi.org/10.1111/plb.12035

    Article  Google Scholar 

  43. Konczewicz W, Zimniewska M, Valera MA (2018) The selection of a retting method for the extraction of bast fibers as response to challenges in composite reinforcement. Text Res J 88:2104–2119. https://doi.org/10.1177/0040517517716902

    Article  Google Scholar 

  44. Kumaar AS, Senthilkumar A, Saravanakumar SS et al (2022) Mechanical properties of alkali-treated carica papaya fiber-reinforced epoxy composites. J Nat Fibers 19:269–279. https://doi.org/10.1080/15440478.2020.1739590

    Article  Google Scholar 

  45. Kumar S, Gangil B, Mer KKS, Gupta MK, Patel VK (2020) Bast fiber-based polymer composites. In Khan A, Rangappa SM, Jawaid M, Siengchin S, Asiri AM (eds) Hybrid Fiber Composites. https://doi.org/10.1002/9783527824571.ch9

  46. Lautenschläger T, Kempe A, Neinhuis C et al (2016) Not only delicious: papaya bast fibres in biocomposites. BioResources :6582–6589. https://doi.org/10.15376/biores.11.3.6582-6589

  47. Leão AL, Cherian BM, De Souza SF et al (2012) Natural fibres for geotextiles. Handb Nat Fibres 280–311. https://doi.org/10.1533/9780857095510.2.280

  48. Li X (2004) Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. LSU Master’s Theses, pp 866. https://digitalcommons.lsu.edu/gradschool_theses/866

  49. Maache M, Bezazi A, Amroune S et al (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr Polym 171:163–172. https://doi.org/10.1016/j.carbpol.2017.04.096

    Article  Google Scholar 

  50. De MKM, Dos Santos TF, Santos CMDS et al (2019) Study of the reuse potential of the sisal fibers powder as a particulate material in polymer composites. J Mater Res Technol 8:4019–4025. https://doi.org/10.1016/j.jmrt.2019.07.010

    Article  Google Scholar 

  51. Mohammed L, Ansari MNM, Pua G et al (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:1–15. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  52. Mokshina N, Chernova T, Galinousky D et al (2018) Key stages of fiber development as determinants of bast fiber yield and quality. Fibers 6:20. https://doi.org/10.3390/fib6020020

    Article  Google Scholar 

  53. Mukhopadhyay S, Fangueiro R, Arpaç Y, Şentürk Ü (2008) Banana fibers – variability and fracture behaviour. J Eng Fiber Fabr 3:155892500800300. https://doi.org/10.1177/155892500800300207

    Article  Google Scholar 

  54. Muzyczek M (2012) The use of flax and hemp for textile applications. In: Handbook of Natural Fibres. Elsevier, pp 312–328. https://doi.org/10.1016/B978-0-12-818782-1.00004-3

  55. Oliveira FR, Erkens L, Fangueiro R, Souto AP (2012) Surface modification of banana fibers by DBD plasma treatment. Plasma Chem Plasma Process 32:259–273. https://doi.org/10.1007/s11090-012-9354-3

    Article  Google Scholar 

  56. Ortega Z, Morón M, Monzón MD et al (2016) Production of banana fiber yarns for technical textile reinforced composites. Mater 9:370. https://doi.org/10.3390/MA9050370

    Article  Google Scholar 

  57. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. https://doi.org/10.1186/1754-6834-3-10/TABLES/2

    Article  Google Scholar 

  58. Pennas LGA, Cattani IM, Leonardi B et al (2019) Textile palm fibers from amazon biome. Mater Res Rev ibero-americana Mater 11:262–274. https://doi.org/10.21741/9781644900178-22

    Article  Google Scholar 

  59. Pietak A, Korte S, Tan E et al (2007) Atomic force microscopy characterization of the surface wettability of natural fibres. Appl Surf Sci 253:3627–3635. https://doi.org/10.1016/J.APSUSC.2006.07.082

    Article  Google Scholar 

  60. Poletto M (2017) Compósitos termoplásticos com madeira - uma breve revisão. Rev Interdiscip Ciência Apl 2:42–48

    Google Scholar 

  61. Pradip, S. & Ashok M (2015) Mechanical characterization and water absorption studies on jute / hemp reinforced hybrid composites. 5:133–139. https://doi.org/10.5923/c.materials.201502.27

  62. Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 55:107–162. https://doi.org/10.1080/15583724.2014.971124

    Article  Google Scholar 

  63. Rashwan E, Mousa A, EL-Sabagh A, Barutçular C (2016) Yield and quality traits of some flax cultivars as influenced by different irrigation intervals. J Agric Sci 8:226. https://doi.org/10.5539/JAS.V8N10P226

    Article  Google Scholar 

  64. Rebouillat S, Letellier B, Steffenino B (1999) Wettability of single fibres – beyond the contact angle approach. Int J Adhes Adhes 19:303–314. https://doi.org/10.1016/S0143-7496(99)00006-8

    Article  Google Scholar 

  65. Reddy KO, Maheswari CU, Shukla M (2013) Physico-chemical characterization of cellulose extracted from Ficus leaves. J Biobased Mater Bioenergy 7:496–499. https://doi.org/10.1166/jbmb.2013.1342

    Article  Google Scholar 

  66. Rusu M, Mörseburg K, Gregersen Ø et al (2011) Relation between fibre flexibility and cross-sectional propertie. BioResources :641–655. https://doi.org/10.15376/biores.6.1.641-655

  67. Samad MA, Sayeed MMA, Hussain MA et al (2002) Mechanical Properties of Kenaf Fibres (Hibiscus cannabinus) and their spinning quality. Pakistan J Biol Sci 5:662–664. https://doi.org/10.3923/pjbs.2002.662.664

    Article  Google Scholar 

  68. Samanta AK, Mukhopadhyay A, Ghosh SK (2020) Processing of jute fibres and its applications. In: Handbook of natural fibres. Elsevier, pp 49–120. https://doi.org/10.1016/B978-0-12-818782-1.00002-X

  69. Santos C, Santos T, Fonseca R, Melo K, Aquino M (2021) Phenolic resin and its derivatives. In: Jawaid M, Asim M (eds) Phenolic polymers based composite materials. Composites Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-8932-4_1

  70. Santos C, Santos T, Moreira K et al (2021) Statistical study of the influence of fiber content, fiber length and critical length in the mechanical behavior of polymeric composites reinforced with Carica Papaya Fibers (CPFs). Appl Sci Eng Prog 14:719–726. https://doi.org/10.14416/J.ASEP.2021.07.002

    Article  Google Scholar 

  71. SaravanaKumaar A, Senthilkumar A, Sornakumar T et al (2017) Physicochemical properties of new cellulosic fiber extracted from Carica papaya bark. J Nat Fibers 16:175–184. https://doi.org/10.1080/15440478.2017.1410514

    Article  Google Scholar 

  72. Sarikanat M, Seki Y, Sever K, Durmuşkahya C (2014) Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Compos Part B Eng 57:180–186. https://doi.org/10.1016/J.COMPOSITESB.2013.09.041

    Article  Google Scholar 

  73. Seki Y, Sarikanat M, Sever K, Durmuşkahya C (2013) Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos Part B Eng 44:517–523. https://doi.org/10.1016/J.COMPOSITESB.2012.03.013

    Article  Google Scholar 

  74. Shahinur S, Hasan M, Ahsan Q et al (2015) Characterization on the properties of jute fiber at different portions. Int J Polym Sci 2015:. https://doi.org/10.1155/2015/262348

  75. Shahinur S, Hasan M, Ahsan Q (2013) Outcome of rot retardant treatment on the mechanical properties of different portion jute fiber. Bangladesh J Phys 13:59–64

    Google Scholar 

  76. Shahria S (2019) Fabrication and property evaluation of hemp–flax fiber reinforced hybrid composite. Chem Mater Eng 7:17–23. https://doi.org/10.13189/CME.2019.070202

    Article  Google Scholar 

  77. Sinha E, Panigrahi S (2009) Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. J Compos Mater 43:1791–1802. https://doi.org/10.1177/0021998309338078

    Article  Google Scholar 

  78. Spinacé MAS, Lambert CS, Fermoselli KKG, De Paoli M-A (2009) Characterization of lignocellulosic curaua fibres. Carbohydr Polym 77:47–53. https://doi.org/10.1016/J.CARBPOL.2008.12.005

    Article  Google Scholar 

  79. Sreenivasan VS, Somasundaram S, Ravindran D et al (2011) Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – An exploratory investigation. Mater Des 32:453–461. https://doi.org/10.1016/j.matdes.2010.06.004

    Article  Google Scholar 

  80. Subagyo A, Chafidz A (2020) Banana pseudo-stem fiber: preparation, characteristics, and applications. In: Banana Nutrition - Function and Processing Kinetics. IntechOpen. https://doi.org/10.5772/intechopen.82204

  81. Thiruchitrambalam M, Alavudeen A, Venkateshwaran N (2012) Review on Kenaf fiber composites. Rev Adv Mater Sci 32:106–112

    Google Scholar 

  82. Vandepitte K, Vasile S, Vermeire S et al (2020) Hemp (Cannabis sativa L.) for high-value textile applications: The effective long fiber yield and quality of different hemp varieties, processed using industrial flax equipment. Ind Crops Prod 158:112969. https://doi.org/10.1016/j.indcrop.2020.112969

    Article  Google Scholar 

  83. Varma IK, Krishnan SRA, Krishnamoorthy S (1989) Effect of chemical treatment on density and crystallinity of jute fibers. Text Res J 59:368–370. https://doi.org/10.1177/004051758905900609

    Article  Google Scholar 

  84. Viotti C, Albrecht K, Amaducci S et al (2022) Nettle, a long-known fiber plant with new perspectives. Materials (Basel) 15:4288. https://doi.org/10.3390/ma15124288

    Article  Google Scholar 

  85. Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials (Basel) 6:5171–5198. https://doi.org/10.3390/ma6115171

    Article  Google Scholar 

  86. Zimniewska M (2022) Hemp fibre properties and processing target textile: a review. Materials (Basel) 15:1901. https://doi.org/10.3390/ma15051901

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by our Lord and financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. We thank our colleagues at the Textile Quality Control Laboratory – LABCTEX and Textile Engineering Post Graduate Program—PPgET at the Federal University of Rio Grande do Norte.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this work.

Corresponding author

Correspondence to Sanjay Mavinkere Rangappa.

Ethics declarations

Ethics approval

Not Applicable.

Competing interests

None.

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, C.M., Santos, T.F., Rangappa, S.M. et al. Physical & mechanical and chemical properties on papaya tree bast fibers from different portions. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04513-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04513-1

Keywords

Navigation