Skip to main content
Log in

Enhanced removal of Cu(II) and Ni(II) using MnOx-modified non-edible biochar: synthesis, characterization, optimization, thermo-kinetics, and regeneration

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The remediation of copper and nickel heavy metals from industrial effluents is crucial to prevent environmental pollution and protect public health. Biosorption, a low-cost and eco-friendly technology, has gained increasing attention as an efficient method for the removal of heavy metals from effluent. In this work, a novel low-cost cocopeat biochar has been developed with appropriate chemical modification using KMnO4 to achieve high removal capacity and cyclic stability. Response surface methodology (RSM) was employed to identify optimal conditions and achieved as 1 g/L adsorbent dosage, 710 mg/L metal concentration, and 20-min contact time for Cu(II), and 2.85 g/L adsorbent dosage, 872 mg/L metal concentration, and 20 min contact time for Ni(II). A maximum adsorption capacity achieved as 291.54 mg/g and 181.16 mg/g for Cu(II) and Ni(II), respectively. Biosorbent exhibited a rapid kinetic process, with 86.44% and 77.61% adsorption occurring within just 20 min for Cu(II) and Ni(II), respectively. Brunauer–Emmett–Teller (BET) analysis showed a well-developed mesoporous molecular structure with an average pore diameter of 42.593 nm. The experimental results were fitted well with the pseudo-second-order and Langmuir isotherm, indicating monolayer adsorption primarily directed by chemisorption. Desorption efficiencies 48.25% and 52.16% for Cu(II) and Ni(II) respectively were achieved after four adsorption–desorption cycles. Furthermore, a preliminary study of chitosan composed of biochar was performed by experimental analysis and determination of optimum conditions of best performing synthesis methods using response surface methodology, biosorbent characterization, and possible mechanism of adsorption, which could potentially complement the removal of heavy metals from wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

RSM :

Response surface methodology

q m :

Maximum adsorption capacity (mg/g)

q t :

Adsorption capacity at time (mg/g)

q e :

Equilibrium adsorption capacity (mg/g)

FE-SEM :

Field emission scanning electron microscopy

EDX :

Energy dispersive X-ray

BET :

Brunauer-Emmett-Teller

AAS :

Atomic absorption spectroscopy

TGA :

Thermogravimetric analyzer

FTIR :

Fourier-transform infrared spectroscopy

XPS :

X-ray photoelectron spectroscopy

S a :

Specific surface area (m2/g)

R e :

Adsorption removal efficiency

CBC :

Cocopeat biochar

MnO x -CBC :

MnOx-modified cocopeat biochar

CH :

Chitosan

CH-CBC :

Chitosan-cocopeat biochar composite

CH-H 3 PO 4 -CBC :

Chitosan-modified cocopeat biochar with H3PO4 impregnation

CH-Fe-CBC :

Chitosan-modified cocopeat biochar with FeCl3 impregnation

EDTA :

Ethylenediaminotetraacetic acid

CS/EDTA/CBC :

Chitosan and ethylenediaminotetraacetic acid-blended cotton biochar

DI :

De-ionized water

pH pzc :

Point of zero charge

R des :

Desorption efficiency

\({K}_{L}\), \({K}_{F}\) :

Langmuir constant (L/mg) and Freundlich constant (mg/g)

R L :

Separation factor in Langmuir isotherm

\({K}_{T}\) :

Equilibrium binding constant in Temkin isotherm (\(\left(\mathrm{L}/\mathrm{g}\right)\)

D-R :

Dubinin-Radushkevich isotherm

\(\beta\) and \(\varepsilon\) :

D-R model constant and polany potential

\({n}_{H}\) and \({K}_{H}\) :

Halsey’s constants

\({K}_{j}\) :

Jovanovic constant

\({B}_{HJ}\) and \({A}_{HJ}\) :

Harkin-Jura constants

PFO :

Pseudo-first order

\({k}_{1}\) :

Rate constant in PFO kinetic (min1)

PSO :

Pseudo-second order

\({k}_{2}\) :

Rate constant in PSO kinetic (g/mg min)

\(\alpha\) and \(\beta\) :

Initial adsorption rate and desorption constants in Elovich kinetic model

\({k}_{W\&M}\) :

Diffusion rate constant in Weber and Morris kinetic model

CCD :

Central composite design

WHO :

World Health Organization

DA :

Degree of chitin acetylation

R 2 :

Regression coefficient

FSBC :

Fe/chitosan/biochar composite produced from soy sauce residue for Cr(VI) removal

References

  1. Rajendran S, Priya AK, Senthil Kumar P et al (2022) A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-a review. Chemosphere 303:135146. https://doi.org/10.1016/j.chemosphere.2022.135146

    Article  Google Scholar 

  2. Berslin D, Reshmi A, Sivaprakash B et al (2022) Remediation of emerging metal pollutants using environment friendly biochar- review on applications and mechanism. Chemosphere 290:133384. https://doi.org/10.1016/j.chemosphere.2021.133384

    Article  Google Scholar 

  3. Kumar V, Dwivedi SK (2021) A review on accessible techniques for removal of hexavalent chromium and divalent nickel from industrial wastewater: recent research and future outlook. J Clean Prod 295:126229. https://doi.org/10.1016/j.jclepro.2021.126229

    Article  Google Scholar 

  4. Milićević S, Vlahović M, Kragović M et al (2020) Removal of copper from mining wastewater using natural raw material—comparative study between the synthetic and natural wastewater samples. Minerals 10:1–16. https://doi.org/10.3390/min10090753

    Article  Google Scholar 

  5. Khandgave SS, Sreedhar I (2023) A mini-review on engineered biochars as emerging adsorbents in heavy metal removal. Mater Today Proc 72:19–26. https://doi.org/10.1016/j.matpr.2022.05.367

    Article  Google Scholar 

  6. Kumar Reddy DH, Lee SM (2012) Water pollution and treatment technologies. J Environ Anal Toxicol 02:3–22. https://doi.org/10.4172/2161-0525.1000e103

    Article  Google Scholar 

  7. Grba N, Baldermann A, Dietzel M (2023) Novel green technology for wastewater treatment: geo-material/geopolymer applications for heavy metal removal from aquatic media. Int J Sediment Res 38:33–48. https://doi.org/10.1016/j.ijsrc.2022.08.002

    Article  Google Scholar 

  8. Kwon G, Bhatnagar A, Wang H et al (2020) A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. J Hazard Mater 400:123242. https://doi.org/10.1016/j.jhazmat.2020.123242

    Article  Google Scholar 

  9. Abegunde SM, Idowu KS, Adejuwon OM, Adeyemi-Adejolu T (2020) A review on the influence of chemical modification on the performance of adsorbents. Resour Environ Sustain 1:100001. https://doi.org/10.1016/J.RESENV.2020.100001

    Article  Google Scholar 

  10. Sireesha S, Sreedhar I (2023) Modified low cost engineered biochar prepared from neem de-oiled cake for heavy metal sorption. Mater Today Proc 72:34–40. https://doi.org/10.1016/J.MATPR.2022.05.454

    Article  Google Scholar 

  11. An Q, Jiang Y-Q, Nan H et al (2019) Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: implicit mechanism. Chemosphere 214:846–854. https://doi.org/10.1016/j.chemosphere.2018.10.007

    Article  Google Scholar 

  12. Chen S, Zhong M, Wang H et al (2023) Study on adsorption of Cu2+, Pb2+, Cd2+, and Zn2+ by the KMnO4 modified biochar derived from walnut shell. Int J Environ Sci Technol 20:1551–1568. https://doi.org/10.1007/s13762-022-04002-4

    Article  Google Scholar 

  13. Omer AM, Dey R, Eltaweil AS et al (2022) Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. Arab J Chem 15:103543. https://doi.org/10.1016/j.arabjc.2021.103543

    Article  Google Scholar 

  14. Gao L, Cao Y, Wang L, Li S (2022) A review on sustainable reuse applications of Fenton sludge during wastewater treatment. Front Environ Sci Eng 16:77. https://doi.org/10.1007/s11783-021-1511-6

    Article  Google Scholar 

  15. Wang H, Gao B, Wang S et al (2015) Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour Technol 197:356–362. https://doi.org/10.1016/J.BIORTECH.2015.08.132

    Article  Google Scholar 

  16. Fan X, Wang X, Cai Y et al (2022) Functionalized cotton charcoal/chitosan biomass-based hydrogel for capturing Pb2+, Cu2+ and MB. J Hazard Mater 423:127191. https://doi.org/10.1016/j.jhazmat.2021.127191

    Article  Google Scholar 

  17. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:1–11. https://doi.org/10.1155/2017/3039817

    Article  Google Scholar 

  18. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  19. Gupta S, Sireesha S, Sreedhar I, et al (2020) Latest trends in heavy metal removal from wastewater by biochar based sorbents. J Water Process Eng 38:. https://doi.org/10.1016/j.jwpe.2020.101561

  20. Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:122156. https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  Google Scholar 

  21. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  22. Singh NB, Agarwal A, De A, Singh P (2022) Coal fly ash: an emerging material for water remediation. Int J Coal Sci Technol 9:44. https://doi.org/10.1007/s40789-022-00512-1

    Article  Google Scholar 

  23. Wang L, Wang Y, Ma F et al (2019) Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review. Sci Total Environ 668:1298–1309. https://doi.org/10.1016/j.scitotenv.2019.03.011

    Article  Google Scholar 

  24. Leng L, Xiong Q, Yang L et al (2021) An overview on engineering the surface area and porosity of biochar. Sci Total Environ 763:144204. https://doi.org/10.1016/j.scitotenv.2020.144204

    Article  Google Scholar 

  25. Abdi J, Sisi AJ, Hadipoor M, Khataee A (2022) State of the art on the ultrasonic-assisted removal of environmental pollutants using metal-organic frameworks. J Hazard Mater 424:127558. https://doi.org/10.1016/j.jhazmat.2021.127558

    Article  Google Scholar 

  26. Li Y, Liang Y-Q, Mao X-M, Li H (2022) Efficient removal of Cu(II) from an aqueous solution using a novel chitosan assisted EDTA-intercalated hydrotalcite-like compound composite: Preparation, characterization, and adsorption mechanism. Chem Eng J 438:. https://doi.org/10.1016/j.cej.2022.135531

  27. Cheung CW, Porter JF, Mckay G (2001) Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 35:605–612. https://doi.org/10.1016/S0043-1354(00)00306-7

    Article  Google Scholar 

  28. Nirmala N, Shriniti V, Aasresha K, et al (2022) Removal of toxic metals from wastewater environment by graphene-based composites: a review on isotherm and kinetic models, recent trends, challenges and future directions. Sci Total Environ 840:. https://doi.org/10.1016/j.scitotenv.2022.156564

  29. A.O D, (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn 2+ unto phosphoric acid modified rice Husk. IOSR J Appl Chem 3:38–45. https://doi.org/10.9790/5736-0313845

    Article  Google Scholar 

  30. Ayawei N, Ekubo AT, Wankasi D, Dikio ED (2015) Adsorption of congo red by Ni/Al-CO3: equilibrium thermodynamic and kinetic studies. Orient J Chem 31:1307–13184. https://doi.org/10.13005/ojc/310307

    Article  Google Scholar 

  31. de Oliveira C, Renda CG, Moreira AJ et al (2023) Evaluation of a graphitic porous carbon modified with iron oxides for atrazine environmental remediation in water by adsorption. Environ Res 219:115054. https://doi.org/10.1016/J.ENVRES.2022.115054

    Article  Google Scholar 

  32. Isaac R, Siddiqui S (2022) Adsorption of divalent copper from aqueous solution by magnesium chloride co-doped Cicer arietinum husk biochar: isotherm, kinetics, thermodynamic studies and response surface methodology. Bioresour Technol Reports 18:101004. https://doi.org/10.1016/J.BITEB.2022.101004

    Article  Google Scholar 

  33. Jiang C, Yue F, Li C, et al (2022) Polyethyleneimine-modified lobster shell biochar for the efficient removal of copper ions in aqueous solution: response surface method optimization and adsorption mechanism. J Environ Chem Eng 10:. https://doi.org/10.1016/j.jece.2022.108996

  34. Siddiqui S, Bhatnagar P, Sireesha S et al (2023) Efficient copper removal using low-cost H3PO4 impregnated red-gram biochar-MnO2 nanocomposites. Bioresour Technol Reports 21:101304. https://doi.org/10.1016/j.biteb.2022.101304

    Article  Google Scholar 

  35. Bashir M, Tyagi S, Annachhatre AP (2020) Adsorption of copper from aqueous solution onto agricultural adsorbents: kinetics and isotherm studies. Mater Today Proc 28:1833–1840. https://doi.org/10.1016/j.matpr.2020.05.287

    Article  Google Scholar 

  36. Han R, Zou W, Zhang Z et al (2006) Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand: I. Characterization and kinetic study. J Hazard Mater 137:384–395. https://doi.org/10.1016/J.JHAZMAT.2006.02.021

    Article  Google Scholar 

  37. Adamczuk A, Kołodyńska D (2015) Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan. Chem Eng J 274:200–212. https://doi.org/10.1016/j.cej.2015.03.088

    Article  Google Scholar 

  38. Chaiyaraksa C, Boonyakiat W, Bukkontod W, Ngakom W (2019) Adsorption of copper (II) and nickel (II) by chemical modified magnetic biochar derived from eichhornia crassipes. EnvironmentAsia 12:14–23. https://doi.org/10.14456/ea.2019.23

    Article  Google Scholar 

  39. Zhao F, Shan R, Gu J et al (2022) Magnetically recyclable loofah biochar by KMnO4 modification for adsorption of Cu(II) from aqueous solutions. ACS Omega 7:8844–8853. https://doi.org/10.1021/acsomega.1c07163

    Article  Google Scholar 

  40. Song Z, Lian F, Yu Z et al (2014) Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chem Eng J 242:36–42. https://doi.org/10.1016/j.cej.2013.12.061

    Article  Google Scholar 

  41. Bashir M, Mohan C, Tyagi S, Annachhatre A (2022) Copper removal from aqueous solution using chemical precipitation and adsorption by Himalayan Pine Forest Residue as Biochar. Water Sci Technol 86:530–554. https://doi.org/10.2166/wst.2022.222

    Article  Google Scholar 

  42. Qiu B, Tao X, Wang H et al (2021) Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. J Anal Appl Pyrolysis 155:105081. https://doi.org/10.1016/J.JAAP.2021.105081

    Article  Google Scholar 

  43. Rizwan K, Rasheed T, Bilal M (2022) Alginate-based nanobiosorbents for bioremediation of environmental pollutants. In: Nano-Biosorbents for Decontamination of Water, Air, and Soil Pollution. Elsevier, 479–502. https://doi.org/10.1016/B978-0-323-90912-9.00021-6

  44. Bilal M, Ihsanullah I, Younas M, Ul Hassan Shah M (2022) Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: a critical review. Sep Purif Technol 278:119510. https://doi.org/10.1016/j.seppur.2021.119510

    Article  Google Scholar 

  45. Ding Z, Hu X, Wan Y et al (2016) Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. J Ind Eng Chem 33:239–245. https://doi.org/10.1016/j.jiec.2015.10.007

    Article  Google Scholar 

  46. Yaashikaa PR, Kumar PS, Saravanan A, Vo DVN (2021) Advances in biosorbents for removal of environmental pollutants: a review on pretreatment, removal mechanism and future outlook. J Hazard Mater 420:. https://doi.org/10.1016/j.jhazmat.2021.126596

  47. Zhang W, Song J, He Q et al (2020) Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. J Hazard Mater 384:121445. https://doi.org/10.1016/J.JHAZMAT.2019.121445

    Article  Google Scholar 

  48. Dong Y, Kong X, Luo X, Wang H (2022) Adsorptive removal of heavy metal anions from water by layered double hydroxide: a review. Chemosphere 303:. https://doi.org/10.1016/j.chemosphere.2022.134685

  49. Shakoor MB, Ali S, Rizwan M et al (2020) A review of biochar-based sorbents for separation of heavy metals from water. Int J Phytoremediation 22:111–126. https://doi.org/10.1080/15226514.2019.1647405

    Article  Google Scholar 

  50. Inyang MI, Gao B, Yao Y et al (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46:406–433. https://doi.org/10.1080/10643389.2015.1096880

    Article  Google Scholar 

  51. Hassan M, Naidu R, Du J et al (2020) Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment. Sci Total Environ 702:134893. https://doi.org/10.1016/j.scitotenv.2019.134893

    Article  Google Scholar 

  52. Saffari M, Moazallahi M (2022) Evaluation of slow-pyrolysis process effect on adsorption characteristics of cow bone for Ni ion removal from Ni- contaminated aqueous solutions. Pollution 8:1076–1087. https://doi.org/10.22059/POLL.2022.339417.1377

    Article  Google Scholar 

  53. Sireesha S, Upadhyay U, Sreedhar I (2022) Comparative studies of heavy metal removal from aqueous solution using novel biomass and biochar-based adsorbents: characterization, process optimization, and regeneration. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02186-2

    Article  Google Scholar 

  54. Sireesha S, Agarwal A, Sopanrao KS et al (2022) Modified coal fly ash as a low-cost, efficient, green, and stable adsorbent for heavy metal removal from aqueous solution. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02695-8

    Article  Google Scholar 

  55. Simate GS, Ndlovu S (2015) The removal of heavy metals in a packed bed column using immobilized cassava peel waste biomass. J Ind Eng Chem 21:635–643. https://doi.org/10.1016/j.jiec.2014.03.031

    Article  Google Scholar 

  56. Tyagi S, Bashir M, Mohan C, Annachhatre A (2022) Characterization of pine residues from himalayan region and their use as copper adsorbent. Water Air Soil Pollut 233:. https://doi.org/10.1007/s11270-022-05624-7

  57. Shaheen SM, Niazi NK, Hassan NEE et al (2019) Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int Mater Rev 64:216–247. https://doi.org/10.1080/09506608.2018.1473096

    Article  Google Scholar 

  58. Cui X, Wang J, Wang X et al (2022) Biochar from constructed wetland biomass waste: a review of its potential and challenges. Chemosphere 287:132259. https://doi.org/10.1016/j.chemosphere.2021.132259

    Article  Google Scholar 

  59. Zou W, Han R, Chen Z et al (2006) Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids Surfaces A Physicochem Eng Asp 279:238–246. https://doi.org/10.1016/J.COLSURFA.2006.01.008

    Article  Google Scholar 

  60. Fawzy MA, Al-Yasi HM, Galal TM, et al (2022) Statistical optimization, kinetic, equilibrium isotherm and thermodynamic studies of copper biosorption onto Rosa damascena leaves as a low-cost biosorbent. Sci Rep 12:. https://doi.org/10.1038/s41598-022-12233-1

  61. Yang T, Xu Y, Huang Q, et al (2022) Removal mechanisms of Cd from water and soil using Fe–Mn oxides modified biochar. Environ Res 212:. https://doi.org/10.1016/j.envres.2022.113406

  62. Mirzaee SA, Jaafarzadeh N, Martinez SS, Noorimotlagh Z (2022) Simultaneous adsorption of heavy metals from aqueous matrices by nanocomposites: a first systematic review of the evidence. Environ Heal Eng Manag 9:9–14. https://doi.org/10.34172/EHEM.2022.02

    Article  Google Scholar 

  63. Kumar M, Seth A, Singh AK et al (2021) Remediation strategies for heavy metals contaminated ecosystem: a review. Environ Sustain Indic 12:100155. https://doi.org/10.1016/j.indic.2021.100155

    Article  Google Scholar 

  64. Liu M, Almatrafi E, Zhang Y et al (2022) A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: applications and practical evaluations. Sci Total Environ 806:150531. https://doi.org/10.1016/j.scitotenv.2021.150531

    Article  Google Scholar 

  65. MozaffariMajd M, Kordzadeh-Kermani V, Ghalandari V et al (2022) Adsorption isotherm models: a comprehensive and systematic review (2010–2020). Sci Total Environ 812:151334. https://doi.org/10.1016/j.scitotenv.2021.151334

    Article  Google Scholar 

  66. Na Nagara V, Sarkar D, Elzinga EJ, Datta R (2022) Removal of heavy metals from stormwater runoff using granulated drinking water treatment residuals. Environ Technol Innov 28:. https://doi.org/10.1016/j.eti.2022.102636

  67. Jean Claude N, Shanshan L, Khan J, et al (2022) Waste tea residue adsorption coupled with electrocoagulation for improvement of copper and nickel ions removal from simulated wastewater. Sci Rep 12:. https://doi.org/10.1038/s41598-022-07475-y

  68. El Mansouri F, El Farissi H, Cacciola F et al (2022) Rapid elimination of copper (II), nickel (II) and chromium (VI) ions from aqueous solutions by charcoal modified with phosphoric acid used as a green biosorbent. Polym Adv Technol 33:2254–2264. https://doi.org/10.1002/pat.5676

    Article  Google Scholar 

  69. Thomas O, Thomas MF (2017) Industrial wastewater. UV-Visible Spectrophotometry of Water and Wastewater 317–348. https://doi.org/10.1016/B978-0-444-63897-7.00010-X

  70. Aigbe UO, Osibote OA (2021) Carbon derived nanomaterials for the sorption of heavy metals from aqueous solution: a review. Environ Nanotechnology, Monit Manag 16:100578. https://doi.org/10.1016/j.enmm.2021.100578

    Article  Google Scholar 

  71. Özer Ç, İmamoğlu M (2023) Isolation of nickel(II) and lead(II) from Aqueous solution by sulfuric acid prepared pumpkin peel biochar. Anal Lett 56:491–503. https://doi.org/10.1080/00032719.2022.2078981

    Article  Google Scholar 

  72. Truong QM, Nguyen TB, Chen WH et al (2023) Removal of heavy metals from aqueous solutions by high performance capacitive deionization process using biochar derived from Sargassum hemiphyllum. Bioresour Technol 370:128524. https://doi.org/10.1016/J.BIORTECH.2022.128524

    Article  Google Scholar 

  73. Zubair M, Ihsanullah I, Abdul Aziz H et al (2021) Sustainable wastewater treatment by biochar/layered double hydroxide composites: progress, challenges, and outlook. Bioresour Technol 319:124128. https://doi.org/10.1016/j.biortech.2020.124128

    Article  Google Scholar 

  74. Bąk J, Thomas P, Kołodyńska D (2022) Chitosan-Modified biochars to advance research on heavy metal ion removal: roles, mechanism and perspectives. Materials (Basel) 15:6108. https://doi.org/10.3390/ma15176108

    Article  Google Scholar 

  75. Sun X, Atiyeh HK, Li M, Chen Y (2020) Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: a review. Bioresour. Technol. 295. https://doi.org/10.1016/j.biortech.2019.122252

  76. Braghiroli FL, Bouafif H, Neculita CM, Koubaa A (2019) Performance of physically and chemically activated biochars in copper removal from contaminated mine effluents. Water Air Soil Pollut 230:. https://doi.org/10.1007/s11270-019-4233-7

  77. Sheth Y, Dharaskar S, Khalid M, Sonawane S (2021) An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: a review. Sustain Energy Technol Assessments 43:100951. https://doi.org/10.1016/j.seta.2020.100951

    Article  Google Scholar 

  78. Huang W-H, Wu R-M, Chang J-S et al (2023) Manganese ferrite modified agricultural waste-derived biochars for copper ions adsorption. Bioresour Technol 367:128303. https://doi.org/10.1016/j.biortech.2022.128303

    Article  Google Scholar 

  79. Karimi F, Ayati A, Tanhaei B et al (2022) Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; a powerful approach in water treatment. Environ Res 203:111753. https://doi.org/10.1016/J.ENVRES.2021.111753

    Article  Google Scholar 

  80. Wang Q, Li L, Kong L et al (2022) Compressible amino-modified carboxymethyl chitosan aerogel for efficient Cu(II) adsorption from wastewater. Sep Purif Technol 293:121146. https://doi.org/10.1016/J.SEPPUR.2022.121146

    Article  Google Scholar 

  81. Peng H, Gao P, Chu G et al (2017) Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853. https://doi.org/10.1016/J.ENVPOL.2017.07.004

    Article  Google Scholar 

  82. Turk Sekulić M, Pap S, Stojanović Z et al (2018) Efficient removal of priority, hazardous priority and emerging pollutants with Prunus armeniaca functionalized biochar from aqueous wastes: Experimental optimization and modeling. Sci Total Environ 613–614:736–750. https://doi.org/10.1016/J.SCITOTENV.2017.09.082

    Article  Google Scholar 

  83. Li DC, Ding JW, Qian TT et al (2016) Preparation of high adsorption performance and stable biochar granules by FeCl3-catalyzed fast pyrolysis. RSC Adv 6:12226–12234. https://doi.org/10.1039/c5ra22870k

    Article  Google Scholar 

  84. Wang H, Wang H, Zhao H, Yan Q (2020) Adsorption and Fenton-like removal of chelated nickel from Zn-Ni alloy electroplating wastewater using activated biochar composite derived from Taihu blue algae. Chem Eng J 379:122372. https://doi.org/10.1016/j.cej.2019.122372

    Article  Google Scholar 

  85. Dutt MA, Hanif MA, Nadeem F, Bhatti HN (2020) A review of advances in engineered composite materials popular for wastewater treatment. J. Environ. Chem. Eng. 8. https://doi.org/10.1016/j.jece.2020.104073

  86. Kavitha E, Sowmya A, Prabhakar S et al (2019) Removal and recovery of heavy metals through size enhanced ultrafiltration using chitosan derivatives and optimization with response surface modeling. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.03.128

    Article  Google Scholar 

  87. Mallik AK, Kabir SF, Bin AbdurRahman F et al (2022) Cu(II) removal from wastewater using chitosan-based adsorbents: a review. J Environ Chem Eng 10:108048. https://doi.org/10.1016/j.jece.2022.108048

    Article  Google Scholar 

  88. Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191. https://doi.org/10.1016/j.molliq.2015.12.013

    Article  Google Scholar 

  89. Okoronkwo A (2014) Biosorption of nickel and copper from a mixed metals solution using chitosan derived from crabs. Br J Appl Sci Technol 4:3769–3784. https://doi.org/10.9734/bjast/2014/6451

    Article  Google Scholar 

  90. Ibrahim AG, Saleh AS, Elsharma EM et al (2019) Chitosan-g-maleic acid for effective removal of copper and nickel ions from their solutions. Int J Biol Macromol 121:1287–1294. https://doi.org/10.1016/j.ijbiomac.2018.10.107

    Article  Google Scholar 

  91. Turan V (2019) Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicol Environ Saf 183:109594. https://doi.org/10.1016/J.ECOENV.2019.109594

    Article  Google Scholar 

  92. Godiya CB, Revadekar C, Kim J, Park BJ (2022) Amine-bilayer-functionalized cellulose-chitosan composite hydrogel for the efficient uptake of hazardous metal cations and catalysis in polluted water. J Hazard Mater 436:. https://doi.org/10.1016/j.jhazmat.2022.129112

  93. Iamsaard K, Weng CH, Yen LT et al (2022) Adsorption of metal on pineapple leaf biochar: key affecting factors, mechanism identification, and regeneration evaluation. Bioresour Technol 344:126131. https://doi.org/10.1016/J.BIORTECH.2021.126131

    Article  Google Scholar 

  94. Verma R, Asthana A, Singh AK, Prasad S (2017) An arginine functionalized magnetic nano-sorbent for simultaneous removal of three metal ions from water samples. RSC Adv 7:51079–51089. https://doi.org/10.1039/c7ra09705k

    Article  Google Scholar 

  95. Xu H, Li X, Gao M et al (2022) Chitosan and biochar synergize the efficient elimination of lead from wastewater by sulfidised nano-zero-valent iron. J Environ Chem Eng 10:107101. https://doi.org/10.1016/J.JECE.2021.107101

    Article  Google Scholar 

  96. Huang A, Bai W, Yang S, et al (2022) Adsorption characteristics of chitosan-modified bamboo biochar in Cd(II) contaminated water. https://doi.org/10.1155/2022/6303252

  97. Upadhyay U, Sreedhar I, Singh SA et al (2021) Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym 251:117000. https://doi.org/10.1016/j.carbpol.2020.117000

    Article  Google Scholar 

  98. da Silva Alves DC, Healy B, de Pinto LA, A, et al (2021) Recent Developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules 26:594. https://doi.org/10.3390/molecules26030594

    Article  Google Scholar 

  99. Akhil D, Lakshmi D, Kartik A et al (2021) Production, characterization, activation and environmental applications of engineered biochar: a review. Environ Chem Lett 19:2261–2297

    Article  Google Scholar 

  100. Chen H, Gao Y, El-Naggar A, et al (2022) Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: characterization, performance and mechanisms. J Hazard Mater 425:. https://doi.org/10.1016/j.jhazmat.2021.127971

  101. Hussain A, Maitra J, Khan KA (2017) Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater. Appl Water Sci 7:4525–4537. https://doi.org/10.1007/s13201-017-0604-7

    Article  Google Scholar 

  102. Yang Y, Zhang Y, Wang G et al (2021) Adsorption and reduction of Cr(VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution. J Environ Chem Eng 9:105407. https://doi.org/10.1016/j.jece.2021.105407

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to HBL Power Systems Ltd., Hyderabad (India), for funding the project and Dr. K. L. Anitha to support the work. The authors also extend gratitude to the Birla Institute of Technology & Science, Pilani, Hyderabad campus, for facilitating the work.

Author information

Authors and Affiliations

Authors

Contributions

KSS: adsorbent synthesis, metal removal experiments, characterization, drafting, and revision.

SG: methodology.

SS: drafting; Xps characterization.

UU: drafting.

IS: project mentoring and monitoring.

Corresponding author

Correspondence to Inkollu Sreedhar.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publish

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Highest adsorption capacities achieved are 291.54 mg/g (Cu) and 181.16 mg/g (Ni).

2. Optimal conditions for Cu): 1 g/L sorbent; 710 mg/L metal conc., 20-min time.

3. Optimal conditions for Ni: 2.85 g/L sorbent; 872 mg/L metal conc., 20-min time.

4. Langmuir isotherm and Pseudo-second order kinetic models were best fits.

5. Developed adsorbent found stable up to 4 cycles with suitable regeneration method.

6. Mechanistic studies done for chitosan-biochar composites.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16863 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sopanrao, K.S., Gupta, S., Sireesha, S. et al. Enhanced removal of Cu(II) and Ni(II) using MnOx-modified non-edible biochar: synthesis, characterization, optimization, thermo-kinetics, and regeneration. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04411-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04411-6

Keywords

Navigation