Skip to main content

Advertisement

Log in

Adsorptive recovery of butanol from acetone butanol and ethanol (ABE) model solution using the kraft lignin isolated from Sterculia foetida shells

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract 

Biobutanol is produced from the acetone-butanol-ethanol (ABE) fermentation. The major bottleneck of ABE fermentation is the self-inhibition of cells and the high energy consumption while recovering butanol. Several alternative techniques have been investigated, but the continuous recovery of butanol using the inexpensive and inert material could be a reliable choice. In the present study, the kraft lignin isolated from the novel lignocellulosic biomass, Sterculia foetida shells, was investigated for its selective adsorptive recovery of biobutanol from the simulated ABE solutions. SEM analyses of morphology and syringyl and guaiacyl units from FTIR show that the isolated lignin is in the softwood category. The XRD analysis shows 76.99% of the crystallinity index, which shows the crystalline features of kraft lignin. High thermal stability and surface area from TGA–DSC and BET analysis shows that the isolated lignin can be wisely used as an adsorbent. The isolated lignin maximum butanol adsorption capacity and the rate constant is 393.700 mg/g and 0.0954, respectively. The results show that Sterculia foetida lignin can be used commercially as a potential adsorbent for continuous biobutanol recovery in the ABE fermentation process. Using renewable lignin as an adsorbent is a sustainable approach for the circular bioeconomy as part of the lignocellulosic biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References  

  1. Li H, Wang H, Darwesh OM et al (2021) Separation of biobutanol from ABE fermentation broth using lignin as adsorbent: a totally sustainable approach with effective utilization of lignocellulose. Int J Biol Macromol 174:11–21. https://doi.org/10.1016/J.IJBIOMAC.2021.01.095

    Article  Google Scholar 

  2. Faisal A, Zarebska A, Saremi P et al (2014) MFI zeolite as adsorbent for selective recovery of hydrocarbons from ABE fermentation broths. Adsorption 20:465–470. https://doi.org/10.1007/s10450-013-9576-6

    Article  Google Scholar 

  3. C. T, Uppuluri KB (2022) Critical analysis of various strategies for the effective and economical separation and purification of butanol from ABE fermentation. Sep Purif Rev 1–26. https://doi.org/10.1080/15422119.2022.2112052

  4. Muazzam R, Hafeez A, Uroos M et al (2021) Plasma-based ozonolysis of lignin waste materials for the production of value-added chemicals. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01707-3

    Article  Google Scholar 

  5. Ahuja D, Kaushik A, Chauhan GS (2017) Fractionation and physicochemical characterization of lignin from waste jute bags: effect of process parameters on yield and thermal degradation. Int J Biol Macromol 97:403–410. https://doi.org/10.1016/J.IJBIOMAC.2017.01.057

    Article  Google Scholar 

  6. Liu Q, Luo L, Zheng L (2018) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19(2):335. https://doi.org/10.3390/ijms19020335

  7. Venkatesagowda B, Dekker RFH (2020) Enzymatic demethylation of kraft lignin for lignin-based phenol-formaldehyde resin applications. Biomass Convers Biorefin 10:203–225. https://doi.org/10.1007/s13399-019-00407-3

    Article  Google Scholar 

  8. Domínguez-Robles J, Sánchez R, Díaz-Carrasco P et al (2017) Isolation and characterization of lignins from wheat straw: application as binder in lithium batteries. Int J Biol Macromol 104:909–918. https://doi.org/10.1016/J.IJBIOMAC.2017.07.015

    Article  Google Scholar 

  9. Oruganti RK, Gungupalli MP, Bhattacharyya D (2022) Alkaline hydrolysis for yield of glucose and kraft lignin from de-oiled Jatropha curcas waste: multiresponse optimization using response surface methodology. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03204-7

    Article  Google Scholar 

  10. Wang K, Xu F, Sun R (2010) Molecular characteristics of kraft-AQ pulping lignin fractionated by sequential organic solvent extraction. Int J Mol Sci 11:2988–3001. https://doi.org/10.3390/ijms11082988

    Article  Google Scholar 

  11. Jiang B, Zhang Y, Guo T et al (2018) Structural characterization of lignin and lignin-carbohydrate complex (LCC) from ginkgo shells (Ginkgo biloba L.) by comprehensive NMR spectroscopy. Polymers (Basel) 10(7):736. https://doi.org/10.3390/polym10070736

  12. Alzagameem A, Klein SE, Bergs M et al (2019) Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms. Polymers (Basel) 11(4):670. https://doi.org/10.3390/polym11040670

  13. Wang J, Tian L, Luo B et al (2018) Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell. Colloids Surf B Biointerfaces 169:356–365. https://doi.org/10.1016/J.COLSURFB.2018.05.021

    Article  Google Scholar 

  14. Abdelaziz OY, Ravi K, Mittermeier F et al (2019) Oxidative depolymerization of kraft lignin for microbial conversion. ACS Sustain Chem Eng 7:11640–11652. https://doi.org/10.1021/acssuschemeng.9b01605

    Article  Google Scholar 

  15. Ibrahim MNM, Iqbal A, Shen CC et al (2019) Synthesis of lignin based composites of TiO2 for potential application as radical scavengers in sunscreen formulation. BMC Chem 13:17. https://doi.org/10.1186/s13065-019-0537-3

    Article  Google Scholar 

  16. Du B, Chen C, Sun Y et al (2020) Lignin bio-oil-based electrospun nanofibers with high substitution ratio property for potential carbon nanofibers applications. Polym Test 89:106591. https://doi.org/10.1016/J.POLYMERTESTING.2020.106591

    Article  Google Scholar 

  17. Silitonga AS, Ong HC, Masjuki HH et al (2013) Production of biodiesel from Sterculia foetida and its process optimization. Fuel 111:478–484. https://doi.org/10.1016/J.FUEL.2013.03.051

    Article  Google Scholar 

  18. Ong HC, Silitonga AS, Masjuki HH et al (2013) Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra. Energy Convers Manag 73:245–255. https://doi.org/10.1016/J.ENCONMAN.2013.04.011

    Article  Google Scholar 

  19. Bindhu C, Reddy JRC, Rao BVSK et al (2012) Preparation and evaluation of biodiesel from Sterculia foetida seed oil. JAOCS J Am Oil Chem Soc 89:891–896. https://doi.org/10.1007/s11746-011-1969-7

    Article  Google Scholar 

  20. Devarajan Y, Munuswamy DB, Nalla BT et al (2022) Experimental analysis of Sterculia foetida biodiesel and butanol blends as a renewable and eco-friendly fuel. Ind Crops Prod 178:114612. https://doi.org/10.1016/J.INDCROP.2022.114612

    Article  Google Scholar 

  21. Bao X, Katz S, Pollard M, Ohlrogge J (2002) Carbocyclic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. PNAS 99(10):7172–7177. https://doi.org/10.1073/pnas.092152999

  22. Vital PG, Velasco RN, Demigillo JM, Rivera WL (2010) Antimicrobial activity, cytotoxicity and phytochemical screening of Ficus septica burm and Sterculia foetida L. leaf extracts. J Med Plants Res 4:58–63. https://doi.org/10.5897/JMPR09.400

    Article  Google Scholar 

  23. Pandit P, Teli MD, Singha K et al (2021) Extraction and characterization of novel Sterculia foetida fruit shell fibre for composite applications. Clean Eng Technol 4:100194. https://doi.org/10.1016/J.CLET.2021.100194

    Article  Google Scholar 

  24. Carvajal JC, Gómez Á, Cardona CA (2016) Comparison of lignin extraction processes: economic and environmental assessment. Bioresour Technol 214:468–476. https://doi.org/10.1016/J.BIORTECH.2016.04.103

    Article  Google Scholar 

  25. Cui J, Chen R, Lei L, Hou Y (2022) Green wood pulping processes with high pulp yield and lignin recovery yield by deep eutectic solvent and its aqueous solutions. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03498-7

    Article  Google Scholar 

  26. Trilokesh C, Uppuluri KB (2019) Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci Rep 9:16709. https://doi.org/10.1038/s41598-019-53412-x

    Article  Google Scholar 

  27. Ling Z, Wang T, Makarem M et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328. https://doi.org/10.1007/s10570-018-02230-x

    Article  Google Scholar 

  28. da Silva SHF, Gordobil O, Labidi J (2020) Organic acids as a greener alternative for the precipitation of hardwood kraft lignins from the industrial black liquor. Int J Biol Macromol 142:583–591. https://doi.org/10.1016/J.IJBIOMAC.2019.09.133

    Article  Google Scholar 

  29. Lourençon T, v., de Lima GG, Ribeiro CSP, et al (2021) Antioxidant, antibacterial and antitumoural activities of kraft lignin from hardwood fractionated by acid precipitation. Int J Biol Macromol 166:1535–1542. https://doi.org/10.1016/J.IJBIOMAC.2020.11.033

    Article  Google Scholar 

  30. Watkins D, Nuruddin M, Hosur M et al (2015) Extraction and characterization of lignin from different biomass resources. J Market Res 4:26–32. https://doi.org/10.1016/J.JMRT.2014.10.009

    Article  Google Scholar 

  31. Uma Maheswari R, Mavukkandy MO, Adhikari U et al (2020) Synergistic effect of humic acid on alkali pretreatment of sugarcane bagasse for the recovery of lignin with phenomenal properties. Biomass Bioenergy 134:105486. https://doi.org/10.1016/J.BIOMBIOE.2020.105486

    Article  Google Scholar 

  32. Pua F, Fang Z, Zakaria S et al (2011) Direct production of biodiesel from high-acid value Jatrophaoil with solid acid catalyst derived from lignin. Biotechnol Biofuels 4:56. https://doi.org/10.1186/1754-6834-4-56

    Article  Google Scholar 

  33. Fan J, Yu Q, Li M et al (2022) Optimization of ethanol-extracted lignin from palm fiber by response surface methodology and preparation of activated carbon fiber for dehumidification. Bioresour Bioprocess 9:61. https://doi.org/10.1186/s40643-022-00549-9

    Article  Google Scholar 

  34. Goudarzi A, Lin L-T, Ko FK (2014) X-ray diffraction analysis of kraft lignins and lignin-derived carbon nanofibers. J Nanotechnol Eng Med 5(2):021006. https://doi.org/10.1115/1.4028300

  35. Ponomarenko J, Dizhbite T, Lauberts M et al (2014) Characterization of softwood and hardwood lignoboost kraft lignins with emphasis on their antioxidant activity. BioResources 9(2):2051–2068

  36. Lin X, Zhou M, Wang S et al (2014) Synthesis, structure, and dispersion property of a novel lignin-based polyoxyethylene ether from kraft lignin and poly(ethylene glycol). ACS Sustain Chem Eng 2:1902–1909. https://doi.org/10.1021/sc500241g

    Article  Google Scholar 

  37. Ferhan M, Yan N, Sain M (2013) A new method for demethylation of lignin from woody biomass using biophysical methods. J Chem Eng Process Tech 04(5):160. https://doi.org/10.4172/2157-7048.1000160

  38. dos Santos PSB, Erdocia X, Gatto DA, Labidi J (2014) Characterisation of kraft lignin separated by gradient acid precipitation. Ind Crops Prod 55:149–154. https://doi.org/10.1016/J.INDCROP.2014.01.023

    Article  Google Scholar 

  39. Younesi-Kordkheili H, Pizzi A, Niyatzade G (2016) Reduction of formaldehyde emission from particleboard by phenolated kraft lignin. J Adhes 92:485–497. https://doi.org/10.1080/00218464.2015.1046596

    Article  Google Scholar 

  40. Pawar SN, Venditti RA, Jameel H et al (2016) Engineering physical and chemical properties of softwood kraft lignin by fatty acid substitution. Ind Crops Prod 89:128–134. https://doi.org/10.1016/J.INDCROP.2016.04.070

    Article  Google Scholar 

  41. Alekhina M, Erdmann J, Ebert A et al (2015) Physico-chemical properties of fractionated softwood kraft lignin and its potential use as a bio-based component in blends with polyethylene. J Mater Sci 50:6395–6406. https://doi.org/10.1007/s10853-015-9192-9

    Article  Google Scholar 

  42. Sevastyanova O, Helander M, Chowdhury S et al (2014) Tailoring the molecular and thermo-mechanical properties of kraft lignin by ultrafiltration. J Appl Polym Sci 131(18). https://doi.org/10.1002/app.40799

  43. Daniel D, Khachatryan L, Astete C et al (2019) Sulfur contaminations inhibit depolymerization of kraft lignin. Bioresour Technol Rep 8:100341. https://doi.org/10.1016/j.biteb.2019.100341

    Article  Google Scholar 

  44. Huang C, He J, Narron R et al (2017) Characterization of kraft lignin fractions obtained by sequential ultrafiltration and their potential application as a biobased component in blends with polyethylene. ACS Sustain Chem Eng 5:11770–11779. https://doi.org/10.1021/acssuschemeng.7b03415

    Article  Google Scholar 

  45. Saad R, Hawari J (2013) Grafting of lignin onto nanostructured silica SBA-15: preparation and characterization. J Porous Mater 20:227–233. https://doi.org/10.1007/s10934-012-9592-z

    Article  Google Scholar 

  46. Brazil TR, Gonçalves M, Junior MSO, Rezende MC (2022) Sustainable process to produce activated carbon from kraft lignin impregnated with H3PO4 using microwave pyrolysis. Biomass Bioenergy 156:106333. https://doi.org/10.1016/J.BIOMBIOE.2021.106333

    Article  Google Scholar 

  47. Xiong W, Yang D, Zhong R et al (2015) Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method. Ind Crops Prod 74:285–292. https://doi.org/10.1016/J.INDCROP.2015.05.021

    Article  Google Scholar 

  48. Wu J, Zhuang W, Ying H et al (2015) Acetone-butanol-ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin. Biotechnol Prog 31:124–134. https://doi.org/10.1002/btpr.2019

    Article  Google Scholar 

  49. Raganati F, Procentese A, Olivieri G et al (2016) Butanol production by Clostridium acetobutylicum in a series of packed bed biofilm reactors. Chem Eng Sci 152:678–688. https://doi.org/10.1016/j.ces.2016.06.059

    Article  Google Scholar 

  50. Rochón E, Ferrari MD, Lareo C (2017) Integrated ABE fermentation-gas stripping process for enhanced butanol production from sugarcane-sweet sorghum juices. Biomass Bioenergy 98:153–160. https://doi.org/10.1016/j.biombioe.2017.01.011

    Article  Google Scholar 

  51. Yang M, Kuittinen S, Vepsäläinen J et al (2017) Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement. Bioresour Technol 243:126–134. https://doi.org/10.1016/j.biortech.2017.06.021

    Article  Google Scholar 

  52. Oudshoorn A, van der Wielen LAM, Straathof AJJ (2009) Adsorption equilibria of bio-based butanol solutions using zeolite. Biochem Eng J 48:99–103. https://doi.org/10.1016/j.bej.2009.08.014

    Article  Google Scholar 

  53. Faisal A, Zhou M, Hedlund J, Grahn M (2018) Zeolite MFI adsorbent for recovery of butanol from ABE fermentation broths produced from an inexpensive black liquor-derived hydrolyzate. Biomass Convers Biorefin 8:679–687. https://doi.org/10.1007/s13399-018-0315-9

    Article  Google Scholar 

  54. Hietaharju J, Kangas J, Yang M et al (2020) Negative impact of butyric acid on butanol recovery by pervaporation with a silicalite-1 membrane from ABE fermentation. Sep Purif Technol 245:116883. https://doi.org/10.1016/j.seppur.2020.116883

    Article  Google Scholar 

  55. Xue C, Liu F, Xu M et al (2016) Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption. Bioresour Technol 219:158–168. https://doi.org/10.1016/J.BIORTECH.2016.07.111

    Article  Google Scholar 

  56. Raganati F, Procentese A, Olivieri G et al (2020) Bio-butanol recovery by adsorption/desorption processes. Sep Purif Technol 235:116145. https://doi.org/10.1016/J.SEPPUR.2019.116145

    Article  Google Scholar 

  57. Wu H, Chen X-P, Liu G-P et al (2012) Acetone–butanol–ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane. Bioprocess Biosyst Eng 35:1057–1065. https://doi.org/10.1007/s00449-012-0721-5

    Article  Google Scholar 

  58. Abdehagh N, Tezel FH, Thibault J (2016) Multicomponent adsorption modeling: isotherms for ABE model solutions using activated carbon F-400. Adsorption 22:357–370. https://doi.org/10.1007/s10450-016-9784-y

    Article  Google Scholar 

  59. Raganati F, Procentese A, Olivieri G et al (2018) Bio-butanol separation by adsorption on various materials: assessment of isotherms and effects of other ABE-fermentation compounds. Sep Purif Technol 191:328–339. https://doi.org/10.1016/j.seppur.2017.09.059

    Article  Google Scholar 

  60. Liu X, He L, Zheng J et al (2015) Solar-light-driven renewable butanol separation by core-shell Ag@ZIF-8 nanowires. Adv Mater 27:3273–3277. https://doi.org/10.1002/adma.201405583

    Article  Google Scholar 

  61. Goerlitz R, Weisleder L, Wuttig S et al (2018) Bio-butanol downstream processing: regeneration of adsorbents and selective exclusion of fermentation by-products. Adsorption 24:95–104. https://doi.org/10.1007/s10450-017-9918-x

    Article  Google Scholar 

  62. Pakzati M, Abedini H, Hamoule T, Shariati A (2021) Equilibrium and dynamic investigation of butanol adsorption from acetone–butanol–ethanol (ABE) model solution using a vine shoot based activated carbon. Adsorption 27:1279–1290. https://doi.org/10.1007/s10450-021-00345-5

    Article  Google Scholar 

  63. Abdehagh N, Tezel FH, Thibault J (2013) Adsorbent screening for biobutanol separation by adsorption: kinetics, isotherms and competitive effect of other compounds. Adsorption 19:1263–1272. https://doi.org/10.1007/s10450-013-9566-8

    Article  Google Scholar 

  64. Levario TJ, Dai M, Yuan W et al (2012) Rapid adsorption of alcohol biofuels by high surface area mesoporous carbons. Microporous Mesoporous Mater 148:107–114. https://doi.org/10.1016/J.MICROMESO.2011.08.001

    Article  Google Scholar 

  65. Gao C, Wu J, Shi Q et al (2017) Adsorption breakthrough behavior of 1-butanol from an ABE model solution with high-silica zeolite: comparison with zeolitic imidazolate frameworks (ZIF-8). Microporous Mesoporous Mater 243:119–129. https://doi.org/10.1016/J.MICROMESO.2017.02.009

    Article  Google Scholar 

  66. Abdehagh N, Gurnani P, Tezel FH, Thibault J (2015) Adsorptive separation and recovery of biobutanol from ABE model solutions. Adsorption 21:185–194. https://doi.org/10.1007/s10450-015-9661-0

    Article  Google Scholar 

  67. Groot WJ, Luyben KChAM (1986) In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. Appl Microbiol Biotechnol 25:29–31. https://doi.org/10.1007/BF00252508

    Article  Google Scholar 

Download references

Acknowledgements

Trilokesh C. gratefully acknowledges CSIR, India, for SRF fellowship (09/1095(0021)/18-EMR-I) and SASTRA Deemed University for teaching assistantship.

Funding

KBU was financially supported by DST/SERB, India (EEQ/2019/000245).

Author information

Authors and Affiliations

Authors

Contributions

KBU conceived the idea and designed the experiments. MM and TC conducted all the experiments. KBU, MM, RKK, and TC analyzed the data. KBU, MM, and RKK wrote and edited the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Kiran Babu Uppuluri.

Ethics declarations

Ethical approval

No human participants and/or animals were involved in this research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhavan, M., Kumar, K.R., C., T. et al. Adsorptive recovery of butanol from acetone butanol and ethanol (ABE) model solution using the kraft lignin isolated from Sterculia foetida shells. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04302-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04302-w

Keywords

Navigation