Skip to main content

Advertisement

Log in

Ordered porous carbon preparation by hard templating approach for hydrogen adsorption application

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The safe, affordable, and eco-friendly storage of gases is a pressing environmental concern worldwide. Porous carbon, as a widely utilized adsorbent with a broad pore size distribution spanning from small micropores to large macropores, is unsuitable for the selective adsorption of gases with very small molecular size, such as hydrogen. Although this adsorbent is relatively low-cost, ordered porous carbons offer promising advantages by leveraging the advantages of carbon-based adsorbents to achieve uniform pore size distribution and high specific surface area, enabling more selective and rapid separation while minimizing pressure drop and allowing for easy regeneration. This work reviews the use of templated ordered porous carbons produced using hard templating with commonly employed templates, such as silica, zeolites, and open framework materials such as metal organic frameworks, for hydrogen storage applications. The synthesis methods and operating parameters that impact the properties of the final product are evaluated in this study, and a brief comparison with soft-templated carbons is also provided. Based on available literature, the hydrogen adsorption properties of hard-templated carbons are explored, including effective operating conditions and parameters and the underlying adsorption mechanisms.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

CAN:

Acetonitrile

AN:

Acrylonitrile

Ar:

Argon

BEA (β):

Beta Zeolite

BJH:

Barrett-Joyner-Halenda

BET:

Brunauer-Emmett-Teller

Ca:

Calcium

CH4 :

Methane

CMPs:

Conjugated microporous polymers

CO:

Carbon monoxide

CO2 :

Carbon dioxide

COFs:

Covalent organic frameworks

CNTs:

Carbon nanotubes

C2H6 :

Ethane

C3H8 :

Propane

C6H6 :

Benzene

C7H8 :

Toluene

CMK-n:

Carbon Mesostructured by KAIST

CMK-nG:

Mesoporous carbons composed of graphitic frameworks

CNTs:

Carbon nanotubes

CTAB:

Cetyltrimethyl ammonium bromide surfactant

CVD:

Chemical vapor deposition

DMSO:

Dimethylsulfoxide

DMF:

Dimethylformamide

DOE:

US Department of Energy

EDTA:

Ethylenediaminetetraacetic Acid

EMT, EMC-2:

EMC-2 Zeolite

FA:

Furfuryl alcohol

FAU:

Faujasite

Fe(NO3)3.9H2O:

Iron nitrate

g-C3N4 :

Graphitic carbon nitride

GO:

Graphene oxide

H2 :

Hydrogen

HF:

Hydrofluoric acid

HCl:

Hydrochloric Acid

H2O:

Water vapor

H2S:

Hydrogen sulfide

H2SO4 :

Sulfuric acid

H2PdCl4 :

Tetrachloropalladic acid

HCPs:

Hyper crosslinked polymers

He:

Helium

HIPE:

High internal phase emulsions

HY:

Hydrogen-form Zeolite Y

IBN-9:

Institute of Bioengineering and Nanotechnology Number 9

K10:

Montmorillonite Clay

KIT:

Korea Advanced Institute of Science and Technology

KOH:

Potassium hydroxide

LOHCs:

Liquid organic hydrogen carriers

MCM:

Mobil Composition of Matter

MCM-41, 48:

Mobil Composition of Matter No. 41, No. 48

Mg:

Magnesium

MIL:

Materials of Institute Lavoisier

MOFs:

Metal-organic frameworks

MPS:

3-Methacryloxypropyl)-trimethoxysilane

MSU:

Michigan State University

MSU-H:

A special kind of mesoporous silica molecular sieve

MY:

Mordenite-Y

Na2CO3 :

Sodium carbonate

NaOH:

Sodium hydroxide

NH2-MIL-125:

Metal-organic framework containing amino groups

NH4F:

Ammonium fluoride

NH4Y-zeolite:

NH4+-exchanged zeolites

Ni:

Nickel

NiO:

Nickel oxide

N2 :

Nitrogen

O2 :

Oxygen

OPPs:

Organo-phosphorous pesticides

PAFs:

Porous aromatic frameworks

PAN:

Polyacrylonitrile

Pd:

Palladium

PEO:

Polyethylene Oxide

PFA:

Poly(furfuryl alcohol)

PIMs:

Polymers of intrinsic microporosity

PEO-b-PPO-b-PEO:

Poly(oxyethylene) − poly(oxypropylene) − poly(oxyethylene)

POPs:

Porous organic polymers

PP:

Polypropylene

PPO:

Polypropylene Oxide

Pt:

Platinum

PSA:

Pressure swing adsorption

PS-b-P4VP:

Polystyrene-b-poly(4-vinyl pyridine)

PVP:

Polyvinylpyrrolidon

RF:

Resorcinol–formaldehyde resin

Ru:

Ruthenium

S:

Sulfur

SBET:

Specific surface area

SBA:

Santa Barbara Amorphous

SBU:

Secondary building unit

SEM:

Scanning electron microscopy

SiO2 :

Silica

TEM:

Transmission electron microscopy

TEOS:

Tetraethyl orthosilicate

XRD:

X-ray diffraction

Vmic :

Micropore volume

Vtot :

Total pore volume

Vultramic :

Ultramicropores volume

UiO-66:

Universitetet i Oslo

ZIF:

Zeolitic imidazolate framework

Zn:

Zinc

ZnCl2 :

Zinc chloride

ZnO:

Zinc oxide

ZSM-5:

Zeolite Socony Mobil-5

ZTC:

Zeolite-templated carbon

References

  1. Chen Z, Kirlikovali KO, Idrees KB et al (2022) Porous materials for hydrogen storage. Chem. https://doi.org/10.1016/j.chempr.2022.01.012

    Article  Google Scholar 

  2. Du Z, Liu C, Zhai J et al (2021) A review of hydrogen purification technologies for fuel cell vehicles. Catalysts. https://doi.org/10.3390/catal11030393

    Article  Google Scholar 

  3. Wiessner FG (1988) Basics and industrial applications of pressure swing adsorption (PSA), the modern way to separate gas. Gas Sep Purif 2:115–119. https://doi.org/10.1016/0950-4214(88)80026-4

    Article  Google Scholar 

  4. Zhu X, Li S, Shi Y et al (2019) Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production. Prog Energy Combust Sci. https://doi.org/10.1016/j.pecs.2019.100784

    Article  Google Scholar 

  5. Lopes FVS, Grande CA, Rodrigues AE (2011) Activated carbon for hydrogen purification by pressure swing adsorption: Multicomponent breakthrough curves and PSA performance. Chem Eng Sci 66:303–317. https://doi.org/10.1016/j.ces.2010.10.034

    Article  Google Scholar 

  6. Ko D, Siriwardane R, Biegler LT (2003) Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration. Ind Eng Chem Res 42:339–348. https://doi.org/10.1021/ie0204540

    Article  Google Scholar 

  7. Brea P, Delgado JA, Águeda VI et al (2019) Comparison between MOF UTSA-16 and BPL activated carbon in hydrogen purification by PSA. Chem Eng J 355:279–289. https://doi.org/10.1016/j.cej.2018.08.154

    Article  Google Scholar 

  8. Zhao C, Chen X, Anthony EJ et al (2013) Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog Energy Combust Sci 39:515–534. https://doi.org/10.1016/j.pecs.2013.05.001

    Article  Google Scholar 

  9. Yang C, Xiong Y, Chen J et al (2021) Amine-functionalized micron-porous polymer foams with high CO2 adsorption efficiency and exceptional stability in PSA process. Chem Eng J. https://doi.org/10.1016/j.cej.2021.129555

    Article  Google Scholar 

  10. Yong Z, Mata V, Rodrigues AE (2000) Adsorption of carbon dioxide on basic alumina at high temperatures. J Chem Eng Data 45:1093–1095. https://doi.org/10.1021/je000075i

    Article  Google Scholar 

  11. de Lima NN, de Souza JRM, Carneiro A, de Cássia Oliveira, et al (2021) Production, application and market of activated carbon in Brazil: a review. Int Wood Prod J 12:240–248. https://doi.org/10.1080/20426445.2021.1964311

    Article  Google Scholar 

  12. Gayathiri M, Pulingam T, Lee KT et al (2022) Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.133764

    Article  Google Scholar 

  13. Sharifian S, Asasian-Kolur N (2022) Polyethylene terephthalate (PET) waste to carbon materials: Theory, methods and applications. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2022.105496

    Article  Google Scholar 

  14. Maniarasu R, Rathore SK, Murugan S (2022) Biomass-based activated carbon for CO2 adsorption–A review. Energy Environ. https://doi.org/10.1177/0958305X22109346

    Article  Google Scholar 

  15. Zhou C, Zhou K, Li H et al (2021) Pressure swing adsorption properties of activated carbon for methanol, acetone and toluene. Chem Eng J. https://doi.org/10.1016/j.cej.2020.127384

    Article  Google Scholar 

  16. Zhou X-L, Zhang H, Shao L-M et al (2021) Preparation and application of hierarchical porous carbon materials from waste and biomass: A review. Waste Biomass Valori 12:1699–1724. https://doi.org/10.1007/s12649-020-01109-y

    Article  Google Scholar 

  17. Chen BB, Liu ML, Huang CZ (2020) Carbon dot-based composites for catalytic applications. Green Chem 22:4034–4054. https://doi.org/10.1039/D0GC01014F

    Article  Google Scholar 

  18. Qin L, Liu W, Liu X et al (2020) A review of nano-carbon based molecularly imprinted polymer adsorbents and their adsorption mechanism. New Carbon Mater 35:459–485. https://doi.org/10.1016/S1872-5805(20)60503-0

    Article  Google Scholar 

  19. Zhang B-T, Zheng X, Li H-F et al (2013) Application of carbon-based nanomaterials in sample preparation: A review. Anal Chim Acta 784:1–17. https://doi.org/10.1016/j.aca.2013.03.054

    Article  Google Scholar 

  20. Lin Y, Tian Y, Sun H et al (2021) Progress in modifications of 3D graphene-based adsorbents for environmental applications. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.129420

    Article  Google Scholar 

  21. Meena AK, Mishra GK, Rai PK et al (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122:161–170. https://doi.org/10.1016/j.jhazmat.2005.03.024

    Article  Google Scholar 

  22. Marpaung F, Kim M, Khan JH et al (2019) Metal–organic framework (MOF)-derived nanoporous carbon materials. Chem Asian J 14:1331–1343. https://doi.org/10.1002/asia.201900026

    Article  Google Scholar 

  23. Wang J, Wang Y, Hu H et al (2020) From metal–organic frameworks to porous carbon materials: recent progress and prospects from energy and environmental perspectives. Nanoscale 12:4238–4268. https://doi.org/10.1039/C9NR09697C

    Article  Google Scholar 

  24. Zhu S, Zhao N, Li J et al (2019) Hard-template synthesis of three-dimensional interconnected carbon networks: rational design, hybridization and energy-related applications. Nano Today. https://doi.org/10.1016/j.nantod.2019.100796

    Article  Google Scholar 

  25. Nishihara H, Hou P-X, Li L-X et al (2009) High-pressure hydrogen storage in zeolite-templated carbon. J Phys Chem C 113:3189–3196. https://doi.org/10.1021/jp808890x

    Article  Google Scholar 

  26. Pachfule P, Dhavale VM, Kandambeth S et al (2013) Porous-organic-framework-templated nitrogen-rich porous carbon as a more proficient electrocatalyst than Pt/C for the electrochemical reduction of oxygen. Chem Eur J 19:974–980. https://doi.org/10.1002/chem.201202940

    Article  Google Scholar 

  27. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103:7743–7746. https://doi.org/10.1021/jp991673a

    Article  Google Scholar 

  28. Diez N, Sevilla M, Fuertes AB (2021) Synthesis strategies of templated porous carbons beyond the silica nanocasting technique. Carbon 178:451–476. https://doi.org/10.1016/j.carbon.2021.03.029

    Article  Google Scholar 

  29. Lee J, Han S, Hyeon T (2004) Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. J Mater Chem 14:478–486. https://doi.org/10.1039/B311541K

    Article  Google Scholar 

  30. Malgras V, Tang J, Wang J et al (2019) Fabrication of nanoporous carbon materials with hard-and soft-templating approaches: A review. J Nanosci Nanotechnol 19:3673–3685. https://doi.org/10.1166/jnn.2019.16745

    Article  Google Scholar 

  31. Schüth F (2003) Endo-and exotemplating to create high-surface-area inorganic materials. Angew. Chem. Int Ed Engl 42:3604–3622. https://doi.org/10.1002/anie.200300593

    Article  Google Scholar 

  32. Taylor EE, Garman K, Stadie NP (2020) Atomistic structures of zeolite-templated carbon. Chem Mater 32:2742–2752. https://doi.org/10.1021/acs.chemmater.0c00535

    Article  Google Scholar 

  33. Lu A-H, Schmidt W, Spliethoff B et al (2003) Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume. Adv Mater 15:1602–1606. https://doi.org/10.1002/adma.200305176

    Article  Google Scholar 

  34. Singh SB, De M (2018) Alumina based doped templated carbons: A comparative study with zeolite and silica gel templates. Microporous Mesoporous Mater 257:241–252. https://doi.org/10.1016/j.micromeso.2017.08.047

    Article  Google Scholar 

  35. Thangaraj V, Dewalque J et al (2020) Carbon-coated porous TiO2 layers templated by core-shell polymer particles: Film processing and charge transfer resistance assessment. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2020.125390

    Article  Google Scholar 

  36. Pavlenko V, Żółtowska S, Haruna AB et al (2022) A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Mater Sci Eng R Rep. https://doi.org/10.1016/j.mser.2022.100682

    Article  Google Scholar 

  37. Zhang W, Cheng R, Bi H et al (2021) A review of porous carbons produced by template methods for supercapacitor applications. New Carbon Mater 36:69–81. https://doi.org/10.1016/S1872-5805(21)60005-7

    Article  Google Scholar 

  38. Marcos-Hernández M, Villagrán D (2019) Mesoporous composite nanomaterials for dye removal and other applications. Composite Nanoadsorbents, 1st edn. Elsevier, Amsterdam, pp 265–293

    Chapter  Google Scholar 

  39. Xu T, Xue C, Zhang Z et al (2014) Hierarchically porous carbon materials templated from skeletonal polyurethane foam. Prog Chem 26:1924–1929. https://doi.org/10.7536/PC140809

    Article  Google Scholar 

  40. Wang X, Dong A, Hu Y et al (2020) A review of recent work on using metal–organic frameworks to grow carbon nanotubes. Chem Comm 56:10809–10823. https://doi.org/10.1039/D0CC04015K

    Article  Google Scholar 

  41. Doustkhah E, Hassandoost R, Khataee A et al (2021) Hard-templated metal–organic frameworks for advanced applications. Chem Soc Rev 50:2927–2953. https://doi.org/10.1039/C9CS00813F

    Article  Google Scholar 

  42. Liu X, Zhang L, Wang J (2021) Design strategies for MOF-derived porous functional materials: Preserving surfaces and nurturing pores. J Materiomics 7:440–459. https://doi.org/10.1016/j.jmat.2020.10.008

    Article  Google Scholar 

  43. Liu B, Shioyama H, Akita T et al (2008) Metal-Organic Framework as a Template for Porous Carbon Synthesis. J Am Chem Soc 130:5390–5391. https://doi.org/10.1021/ja7106146

    Article  Google Scholar 

  44. Doan HV, Amer Hamzah H, Karikkethu Prabhakaran P et al (2019) Hierarchical metal–organic frameworks with macroporosity: synthesis, achievements, and challenges. Nanomicro Lett 11:1–33. https://doi.org/10.1007/s40820-019-0286-9

    Article  Google Scholar 

  45. Li Z-X, Zhang X, Liu Y-C et al (2016) Controlling the BET surface area of porous carbon by using the Cd/C ratio of a Cd–MOF precursor and enhancing the capacitance by activation with KOH. Chem Eur J 22:17734–17747. https://doi.org/10.1002/chem.201603072

    Article  Google Scholar 

  46. Xue B, Xu J, Xiao R (2023) Ice template-assisting activation strategy to prepare biomass-derived porous carbon cages for high-performance Zn-ion hybrid supercapacitors. Chem Eng J 454:140192. https://doi.org/10.1016/j.cej.2022.140192

    Article  Google Scholar 

  47. Guan L, Hu H, Teng X et al (2022) Templating synthesis of porous carbons for energy-related applications: A review. New Carbon Mater 37:25–45. https://doi.org/10.1016/S1872-5805(22)60574-2

    Article  Google Scholar 

  48. Roberts AD, Wang S, Li X et al (2014) Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. J Mater Chem A 2:17787–17796. https://doi.org/10.1039/C4TA02839B

    Article  Google Scholar 

  49. Zhu M, Wang Y, Wang C et al (2013) Hematite nanoparticle-templated hollow carbon nanonets supported palladium nanoparticles: preparation and application as efficient recyclable catalysts. Catal Sci Technol 3:952–961. https://doi.org/10.1039/C2CY20562A

    Article  Google Scholar 

  50. Li J, Wang N, Deng J et al (2018) Flexible metal-templated fabrication of mesoporous onion-like carbon and Fe 2 O 3@ N-doped carbon foam for electrochemical energy storage. J Mater Chem A 6:13012–13020. https://doi.org/10.1039/C8TA02417K

    Article  Google Scholar 

  51. Zhang X, Fan Q, Yang H et al (2018) Graphene oxide template-directed synthesis of porous carbon nanosheets from expired wheat flour for high-performance supercapacitors. New J Chem 42:11689–11696. https://doi.org/10.1039/C8NJ01587B

    Article  Google Scholar 

  52. Sanchez-Sanchez A, Suarez-Garcia F, Martinez-Alonso A et al (2014) Influence of porous texture and surface chemistry on the CO2 adsorption capacity of porous carbons: acidic and basic site interactions. ACS Appl Mater Interfaces 6:21237–21247. https://doi.org/10.1021/am506176e

    Article  Google Scholar 

  53. Zhao Y, Zhao L, Yao KX et al (2012) Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. J Mater Chem 22:19726–19731. https://doi.org/10.1039/C2JM33091A

    Article  Google Scholar 

  54. Jun S, Joo SH, Ryoo R et al (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713. https://doi.org/10.1021/ja002261e

    Article  Google Scholar 

  55. Han S, Lee KT, Oh SM et al (2003) The effect of silica template structure on the pore structure of mesoporous carbons. Carbon 41:1049–1056. https://doi.org/10.1016/S0008-6223(02)00439-6

    Article  Google Scholar 

  56. Karandikar P, Patil KR, Mitra A et al (2007) Synthesis and characterization of mesoporous carbon through inexpensive mesoporous silica as template. Microporous Mesoporous Mater 98:189–199. https://doi.org/10.1016/j.micromeso.2006.09.003

    Article  Google Scholar 

  57. Han S, Hyeon T (1999) Simple silica-particle template synthesis of mesoporous carbons. Chem Comm 19:1955–1956. https://doi.org/10.1039/A905848F

    Article  Google Scholar 

  58. Kao L-H, Hsu T-C (2008) Silica template synthesis of ordered mesoporous carbon thick films with 35-nm pore size from mesophase pitch solution. Mater Lett 62:695–698. https://doi.org/10.1016/j.matlet.2007.06.034

    Article  Google Scholar 

  59. Leżańska M, Olejniczak A, Łukaszewicz JP (2018) Hierarchical porous carbon templated with silica spheres of a diameter of 14 nm from pure chitosan or a chitosan/ZnCl2 solution. J Porous Mater 25:1633–1648. https://doi.org/10.1007/s10934-018-0577-4

    Article  Google Scholar 

  60. Lin CF, Zhang X, Lin H, Wang N, Li JB, Yang XZ (2006) Synthesis of ordered mesoporous carbon using MCM-41 mesoporous silica as template. Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/amr.11-12.543

    Article  Google Scholar 

  61. Kim S-S, Pinnavaia TJ (2001) A low cost route to hexagonal mesostructured carbon molecular sieves. Chem Comm 23:2418–2419. https://doi.org/10.1039/B107896H

    Article  Google Scholar 

  62. Ryoo R, Joo SH, Kruk M et al (2001) Ordered mesoporous carbons. Adv Mater 13:677–681. https://doi.org/10.1002/1521-4095(200105)13:9%3c677::AID-ADMA677%3e3.0.CO;2-C

    Article  Google Scholar 

  63. Liang K, Ma C, Liu L et al (2019) Nitrogen and oxygen co-doped ordered dual-mesoporous carbon for supercapacitors. J Alloys Compd 805:859–867. https://doi.org/10.1016/j.jallcom.2019.07.129

    Article  Google Scholar 

  64. Knox JH, Kaur B, Millward GR (1986) Structure and performance of porous graphitic carbon in liquid chromatography. J Chromatogr A 352:3–25. https://doi.org/10.1016/S0021-9673(01)83368-9

    Article  Google Scholar 

  65. Li Z, Jaroniec M (2001) Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. J Am Chem Soc 123:9208–9209. https://doi.org/10.1021/ja0165178

    Article  Google Scholar 

  66. Samiee L, Tasharrofi S, Hassani SS et al (2017) Novel and economic approach for synthesis of mesoporous silica template and ordered carbon mesoporous by using cation exchange resin. Curr Nanosci 13:595–603. https://doi.org/10.2174/1573413713666170616093238

    Article  Google Scholar 

  67. Ryoo R, Joo SH (2004) Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. In: Studies in surface science and catalysis. Elsevier 148:241–260

  68. Vinu A, Mori T, Ariga K (2006) New families of mesoporous materials. Sci Technol Adv 7:753–771. https://doi.org/10.1016/j.stam.2006.10.007

    Article  Google Scholar 

  69. Peng X, Cao D, Wang W (2009) Computational characterization of hexagonally ordered carbon nanopipes CMK-5 and structural optimization for H2 storage. Langmuir 25:10863–10872. https://doi.org/10.1021/la901440s

    Article  Google Scholar 

  70. Rastegari E, Hsiao Y-J, Lai W-Y et al (2021) An update on mesoporous silica nanoparticle applications in nanomedicine. Pharmaceutics. https://doi.org/10.3390/pharmaceutics13071067

    Article  Google Scholar 

  71. Weinberger C, Haffer S, Wagner T et al (2014) Fructose as a precursor for mesoporous carbon: straightforward solvent-free synthesis by nanocasting. The Science and Function of Nanomaterials: From Synthesis to Application. ACS Publications, Washington DC, pp 3–12

    Chapter  Google Scholar 

  72. Yang Z, Xia Y, Mokaya R (2007) Enhanced Hydrogen Storage Capacity of High Surface Area Zeolite-like Carbon Materials. J Am Chem Soc 129:1673–1679. https://doi.org/10.1021/ja067149g

    Article  Google Scholar 

  73. Yang Z, Xia Y, Sun X et al (2006) Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping. J Phys Chem B 110:18424–18431. https://doi.org/10.1021/jp0639849

    Article  Google Scholar 

  74. Nishihara H, Kyotani T (2018) Zeolite-templated carbons–three-dimensional microporous graphene frameworks. Chem Comm 54:5648–5673. https://doi.org/10.1039/C8CC01932K

    Article  Google Scholar 

  75. Xia Y, Yang Z, Zhu Y (2013) Porous carbon-based materials for hydrogen storage: advancement and challenges. J Mater Chem A 1:9365–9381. https://doi.org/10.1039/C3TA10583K

    Article  Google Scholar 

  76. Nishihara H, Yang Q-H, Hou P-X et al (2009) A possible buckybowl-like structure of zeolite templated carbon. Carbon 47:1220–1230. https://doi.org/10.1016/j.carbon.2008.12.040

    Article  Google Scholar 

  77. Pacuła A, Mokaya R (2008) Synthesis and high hydrogen storage capacity of zeolite-like carbons nanocast using as-synthesized zeolite templates. J Phys Chem C 112:2764–2769. https://doi.org/10.1021/jp076603f

    Article  Google Scholar 

  78. Su F, Zeng J, Yu Y et al (2005) Template synthesis of microporous carbon for direct methanol fuel cell application. Carbon 43:2366–2373. https://doi.org/10.1016/j.carbon.2005.04.018

    Article  Google Scholar 

  79. Antoniou MK, Diamanti EK, Enotiadis A et al (2014) Methane storage in zeolite-like carbon materials. Microporous Mesoporous Mater 188:16–22. https://doi.org/10.1016/j.micromeso.2013.12.030

    Article  Google Scholar 

  80. Park H, Bang J, Han SW et al (2021) Synthesis of zeolite-templated carbons using oxygen-containing organic solvents. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2021.111038

    Article  Google Scholar 

  81. Boonyoung P, Kasukabe T, Hoshikawa Y et al (2019) A simple “nano-templating” method using zeolite Y toward the formation of carbon schwarzites. Front Mater. https://doi.org/10.3389/fmats.2019.00104

    Article  Google Scholar 

  82. Yang G, Li L, Liu H et al (2022) Metal ion (Ca2+, Mg2+, Zn2+) catalyzed synthesis of high-quality zeolite templated carbon. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2022.111860

    Article  Google Scholar 

  83. Xia Y, Yang Z, Mokaya R (2010) Templated nanoscale porous carbons. Nanoscale 2:639–659. https://doi.org/10.1039/B9NR00207C

    Article  Google Scholar 

  84. Sakintuna B, Yürüm Y (2006) Preparation and characterization of mesoporous carbons using a Turkish natural zeolitic template/furfuryl alcohol system. Microporous Mesoporous Mater 93:304–312. https://doi.org/10.1016/j.micromeso.2006.03.013

    Article  Google Scholar 

  85. Aumond T, Rousseau J, Pouilloux Y et al (2021) Synthesis of hierarchical zeolite templated carbons. Carbon Trends. https://doi.org/10.1016/j.cartre.2020.100014

    Article  Google Scholar 

  86. Sevilla M, Alam N, Mokaya R (2010) Enhancement of hydrogen storage capacity of zeolite-templated carbons by chemical activation. J Phys Chem C 114:11314–11319. https://doi.org/10.1021/jp102464e

    Article  Google Scholar 

  87. Johnson SA, Brigham ES, Ollivier PJ et al (1997) Effect of micropore topology on the structure and properties of zeolite polymer replicas. Chem Mater 9:2448–2458. https://doi.org/10.1021/cm9703278

    Article  Google Scholar 

  88. Meyers CJ, Shah SD, Patel SC et al (2001) Templated synthesis of carbon materials from zeolites (Y, beta, and ZSM-5) and a montmorillonite clay (K10): Physical and electrochemical characterization. J Phys Chem B 105:2143–2152. https://doi.org/10.1021/jp0029663

    Article  Google Scholar 

  89. Kyotani T, Tomita A (2002) Preparation of novel porous carbons using various zeolites as templates. J Japan Pet Inst 45:261–270. https://doi.org/10.1016/S0008-6223(03)00090-3

    Article  Google Scholar 

  90. Musyoka NM, Ren J, Langmi HW et al (2015) Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications. Int J Energy Res 39:494–503. https://doi.org/10.1002/er.3261

    Article  Google Scholar 

  91. Zhang T, Xing G, Chen W et al (2020) Porous organic polymers: a promising platform for efficient photocatalysis. Mater Chem Front 4:332–353. https://doi.org/10.1039/C9QM00633H

    Article  Google Scholar 

  92. Liu B, Shioyama H, Jiang H et al (2010) Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48:456–463. https://doi.org/10.1016/j.carbon.2009.09.061

    Article  Google Scholar 

  93. Chai L, Wang X, Hu Y et al (2022) In-MOF-Derived Hierarchically Hollow Carbon Nanostraws for Advanced Zinc-Iodine Batteries. Adv Sci. https://doi.org/10.1002/advs.202105063

    Article  Google Scholar 

  94. Zhang Y, Wu Y, Liu Y et al (2022) Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries. Chem Eng J. https://doi.org/10.1016/j.cej.2021.131040

    Article  Google Scholar 

  95. Barylak M, Cendrowski K, Mijowska E (2018) Application of carbonized metal–organic framework as efficient adsorbent of cationic dye. Ind Eng Chem Res 57:4867–4879. https://doi.org/10.1021/acs.iecr.7b03790

    Article  Google Scholar 

  96. Li Y, Xu X, Hou S et al (2018) Facile dual doping strategy via carbonization of covalent organic frameworks to prepare hierarchically porous carbon spheres for membrane capacitive deionization. Chem Comm 54:14009–14012. https://doi.org/10.1039/C8CC06855K

    Article  Google Scholar 

  97. Zhou J, Wang X, Xing W (2019) CHAPTER 1 Carbon-based CO2 Adsorbents. Post-combustion Carbon Dioxide Capture Materials. The Royal Society of Chemistry, Croydon, pp 1–75

    Google Scholar 

  98. Fu Q, Zhang L, Zhang H et al (2020) Ice-and MOF-templated porous carbonaceous monoliths for adsorptive removal of dyes in water with easy recycling. Environ Res. https://doi.org/10.1016/j.envres.2020.109608

    Article  Google Scholar 

  99. Pang Y, Zang X, Li H et al (2020) Solid-phase microextraction of organophosphorous pesticides from food samples with a nitrogen-doped porous carbon derived from g-C3N4 templated MOF as the fiber coating. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121430

    Article  Google Scholar 

  100. Sun J-K, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci 7:2071–2100. https://doi.org/10.1039/C4EE00517A

    Article  Google Scholar 

  101. Lee J, Ka D, Jung H et al (2021) UiO-66-NH2 and zeolite-templated carbon composites for the degradation and adsorption of nerve agents. Molecules. https://doi.org/10.3390/molecules26133837

    Article  Google Scholar 

  102. Molefe LY, Musyoka NM, Ren J et al (2019) Polymer-based shaping strategy for zeolite templated carbons (ZTC) and their metal organic framework (MOF) composites for improved hydrogen storage properties. Front Chem. https://doi.org/10.3389/fchem.2019.00864

    Article  Google Scholar 

  103. Huang G, Yang L, Ma X et al (2016) Metal-Organic Framework-Templated Porous Carbon for Highly Efficient Catalysis: The Critical Role of Pyrrolic Nitrogen Species. Chem Eur J 22:3470–3477. https://doi.org/10.1002/chem.201504867

    Article  Google Scholar 

  104. Ong WSY, Smaldone RA, Dodani SC (2020) A neutral porous organic polymer host for the recognition of anionic dyes in water. Chem Sci 11:7716–7721. https://doi.org/10.1039/D0SC02941F

    Article  Google Scholar 

  105. Song W, Tang Y, Zhang M et al (2022) Current developments of hypercrosslinked polymers as green carbon resources. Curr Opin Green Sustain Chem. https://doi.org/10.1016/j.crgsc.2022.100335

    Article  Google Scholar 

  106. Li J-G, Ho Y-F, Ahmed MMM et al (2019) Mesoporous carbons templated by PEO-PCL block copolymers as electrode materials for supercapacitors. Chem Eur J 25:10456–10463. https://doi.org/10.1002/chem.201901724

    Article  Google Scholar 

  107. Gao L, Chandra A, Nabae Y et al (2018) Inducing defects in ordered mesoporous carbons via the block copolymer-templated high-temperature carbonization of nitrogen-containing polymeric precursors. Polym J 50:389–396. https://doi.org/10.1038/s41428-018-0023-0

    Article  Google Scholar 

  108. Zolfaghari R, Othman MR, Daud WRW et al (2013) Nonionic surfactant-templated mesoporous carbon as an electrocatalyst support for methanol oxidation. Mater Chem Phys 139:262–269. https://doi.org/10.1016/j.matchemphys.2013.01.033

    Article  Google Scholar 

  109. Lee KT, Oh SM (2002) Novel synthesis of porous carbons with tunable pore size by surfactant-templated sol–gel process and carbonisation. Chem Comm. https://doi.org/10.1039/B208052D

    Article  Google Scholar 

  110. Zhang T, Sanguramath RA, Israel S et al (2019) Emulsion templating: porous polymers and beyond. Macromolecules 52:5445–5479. https://doi.org/10.1021/acs.macromol.8b02576

    Article  Google Scholar 

  111. Szczurek A, Fierro V, Pizzi A et al (2014) Emulsion-templated porous carbon monoliths derived from tannins. Carbon 74:352–362. https://doi.org/10.1016/j.carbon.2014.03.047

    Article  Google Scholar 

  112. Liu J, Yang T, Wang D-W et al (2013) A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat Commun. https://doi.org/10.1038/ncomms3798

    Article  Google Scholar 

  113. Chauhan S (2021) Synthesis of ordered mesoporous carbon by soft template method. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.04.257

    Article  Google Scholar 

  114. Wei J, Sun Z, Luo W et al (2017) New insight into the synthesis of large-pore ordered mesoporous materials. J Am Chem Soc 139:1706–1713. https://doi.org/10.1021/jacs.6b11411

    Article  Google Scholar 

  115. Liang C, Hong K, Guiochon GA et al (2004) Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew Chem Int Ed 43:5785–5789. https://doi.org/10.1002/anie.200461051

    Article  Google Scholar 

  116. Kosonen H, Valkama S, Nykänen A et al (2006) Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin. Adv Mater 18:201–205. https://doi.org/10.1002/adma.200401110

    Article  Google Scholar 

  117. Jin J, Nishiyama N, Egashira Y et al (2009) Pore structure and pore size controls of ordered mesoporous carbons prepared from resorcinol/formaldehyde/triblock polymers. Microporous Mesoporous Mater 118:218–223. https://doi.org/10.1016/j.micromeso.2008.08.030

    Article  Google Scholar 

  118. Tanaka S, Nishiyama N, Egashira Y et al (2005) Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem Comm. https://doi.org/10.1039/B501259G

    Article  Google Scholar 

  119. Zhang F, Meng Y, Gu D et al (2005) A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. J Am Chem Soc 127:13508–13509. https://doi.org/10.1021/ja0545721

    Article  Google Scholar 

  120. Tanaka S, Doi A, Nakatani N et al (2009) Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymer-templating method using an ethanol/water system. Carbon 47:2688–2698. https://doi.org/10.1016/j.carbon.2009.05.024

    Article  Google Scholar 

  121. Ortiz-Martínez VM, Gómez-Coma L, Ortiz A et al (2020) Overview on the use of surfactants for the preparation of porous carbon materials by the sol-gel method: applications in energy systems. Rev Chem Eng 36:771–787. https://doi.org/10.1515/revce-2018-0056

    Article  Google Scholar 

  122. Gierszal KP, Kim T-W, Ryoo R et al (2005) Adsorption and Structural Properties of Ordered Mesoporous Carbons Synthesized by Using Various Carbon Precursors and Ordered Siliceous P6 mm and Ia3̄d Mesostructures as Templates. J Phys Chem B 109:23263–23268. https://doi.org/10.1021/jp054562m

    Article  Google Scholar 

  123. Morishita T, Tsumura T, Toyoda M et al (2010) A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 48:2690–2707. https://doi.org/10.1016/j.carbon.2010.03.064

    Article  Google Scholar 

  124. Hu J, Wang H, Gao Q et al (2010) Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors. Carbon 48:3599–3606. https://doi.org/10.1016/j.carbon.2010.06.008

    Article  Google Scholar 

  125. de Souza LKC, Wickramaratne NP, Ello AS et al (2013) Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. Carbon 65:334–340. https://doi.org/10.1016/j.carbon.2013.08.034

    Article  Google Scholar 

  126. Jaroniec M, Choma J, Gorka J et al (2008) Colloidal silica templating synthesis of carbonaceous monoliths assuring formation of uniform spherical mesopores and incorporation of inorganic nanoparticles. Chem Mater 20:1069–1075. https://doi.org/10.1021/cm7020643

    Article  Google Scholar 

  127. Górka J, Jaroniec M (2011) Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor. Carbon 49:154–160. https://doi.org/10.1016/j.carbon.2010.08.055

    Article  Google Scholar 

  128. Wang H, Yao J (2006) Use of poly (furfuryl alcohol) in the fabrication of nanostructured carbons and nanocomposites. Ind Eng Chem Res 45:6393–6404. https://doi.org/10.1021/ie0602660

    Article  Google Scholar 

  129. Shi L, Yao J, Jiang J et al (2009) Preparation of mesopore-rich carbons using attapulgite as templates and furfuryl alcohol as carbon source through a vapor deposition polymerization method. Microporous Mesoporous Mater 122:294–300. https://doi.org/10.1016/j.micromeso.2009.03.016

    Article  Google Scholar 

  130. Su F, Zhao XS, Lv L et al (2004) Synthesis and characterization of microporous carbons templated by ammonium-form zeolite Y. Carbon 42:2821–2831. https://doi.org/10.1016/j.carbon.2004.06.028

    Article  Google Scholar 

  131. Kruk M, Kohlhaas KM, Dufour B et al (2007) Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. Microporous Mesoporous Mater 102:178–187. https://doi.org/10.1016/j.micromeso.2006.12.027

    Article  Google Scholar 

  132. Ania CO, Khomenko V, Raymundo-Piñero E et al (2007) The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template. Adv Funct Mater 17:1828–1836. https://doi.org/10.1002/adfm.200600961

    Article  Google Scholar 

  133. Ruiz-Rosas R, Valero-Romero MJ, Salinas-Torres D et al (2014) Electrochemical Performance of Hierarchical Porous Carbon Materials Obtained from the Infiltration of Lignin into Zeolite Templates. Chemsuschem 7:1458–1467. https://doi.org/10.1002/cssc.201301408

    Article  Google Scholar 

  134. Li S, Liang Y, Wu D et al (2010) Fabrication of bimodal mesoporous carbons from petroleum pitch by a one-step nanocasting method. Carbon 48:839–843. https://doi.org/10.1016/j.carbon.2009.10.037

    Article  Google Scholar 

  135. Yoon SB, Chai GS, Kang SK et al (2005) Graphitized Pitch-Based Carbons with Ordered Nanopores Synthesized by Using Colloidal Crystals as Templates. J Am Chem Soc 127:4188–4189. https://doi.org/10.1021/ja0423466

    Article  Google Scholar 

  136. Liu J, Qiao SZ, Liu H et al (2011) Extension of The Stöber Method to the Preparation of Monodisperse Resorcinol-Formaldehyde Resin Polymer and Carbon Spheres. Angew. Chem. Int Ed 50:5947–5951. https://doi.org/10.1002/anie.201102011

    Article  Google Scholar 

  137. Goel C, Bhunia H, Bajpai PK (2015) Resorcinol–formaldehyde based nanostructured carbons for CO2 adsorption: kinetics, isotherm and thermodynamic studies. RSC Adv 5:93563–93578. https://doi.org/10.1039/C5RA16255F

    Article  Google Scholar 

  138. Fuentes-Quezada E, La Llave E, de, Halac E, et al (2019) Bimodal mesoporous hard carbons from stabilized resorcinol-formaldehyde resin and silica template with enhanced adsorption capacity. Chem Eng J 360:631–644. https://doi.org/10.1016/j.cej.2018.11.235

    Article  Google Scholar 

  139. Su F, Lv L, Hui TM et al (2005) Phenol adsorption on zeolite-templated carbons with different structural and surface properties. Carbon 43:1156–1164. https://doi.org/10.1016/j.carbon.2004.12.034

    Article  Google Scholar 

  140. Konwar RJ, De M (2015) Development of templated carbon by carbonisation of sucrose–zeolite composite for hydrogen storage. Int J Energy Res 39:223–233. https://doi.org/10.1002/er.3232

    Article  Google Scholar 

  141. Cai J, Yang M, Xing Y et al (2014) Large surface area sucrose-based carbons via template-assisted routes: Preparation, microstructure, and hydrogen adsorption properties. Colloids Surf A: Physicochem Eng Asp 444:240–245. https://doi.org/10.1016/j.colsurfa.2013.12.063

    Article  Google Scholar 

  142. Böhme K, Einicke W-D, Klepel O (2005) Templated synthesis of mesoporous carbon from sucrose—the way from the silica pore filling to the carbon material. Carbon 43:1918–1925. https://doi.org/10.1016/j.carbon.2005.02.043

    Article  Google Scholar 

  143. Valero-Romero MJ, Márquez-Franco EM, Bedia J et al (2014) Hierarchical porous carbons by liquid phase impregnation of zeolite templates with lignin solution. Microporous Mesoporous Mater 196:68–78. https://doi.org/10.1016/j.micromeso.2014.04.055

    Article  Google Scholar 

  144. Herou S, Ribadeneyra MC, Madhu R et al (2019) Ordered mesoporous carbons from lignin: a new class of biobased electrodes for supercapacitors. Green Chem 21:550–559. https://doi.org/10.1039/C8GC03497D

    Article  Google Scholar 

  145. Jedrzejczyk MA, Engelhardt J, Djokic MR et al (2021) Development of Lignin-Based Mesoporous Carbons for the Adsorption of Humic Acid. ACS Omega 6:15222–15235. https://doi.org/10.1021/acsomega.1c01475

    Article  Google Scholar 

  146. Fierro CM, Górka J, Zazo JA et al (2013) Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from Kraft lignin. Carbon 62:233–239. https://doi.org/10.1016/j.carbon.2013.06.012

    Article  Google Scholar 

  147. Zhou J, Li W, Zhang Z et al (2012) Carbon dioxide adsorption performance of N-doped zeolite Y templated carbons. RSC adv 2:161–167. https://doi.org/10.1039/C1RA00247C

    Article  Google Scholar 

  148. Pevida C, Drage TC, Snape CE (2008) Silica-templated melamine–formaldehyde resin derived adsorbents for CO2 capture. Carbon 46:1464–1474. https://doi.org/10.1016/j.carbon.2008.06.026

    Article  Google Scholar 

  149. Besinella GB, Padilha JE, Scheufele FB et al (2021) Green synthesis of templated carbon porous materials from simple raw materials. Mater Adv 2:403–412. https://doi.org/10.1039/D0MA00483A

    Article  Google Scholar 

  150. Liu X, Liu X, Sun B et al (2018) Carbon materials with hierarchical porosity: Effect of template removal strategy and study on their electrochemical properties. Carbon 130:680–691. https://doi.org/10.1016/j.carbon.2018.01.046

    Article  Google Scholar 

  151. Nelson KM, Mahurin SM, Mayes RT et al (2016) Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors. Microporous Mesoporous Mater 222:94–103. https://doi.org/10.1016/j.micromeso.2015.09.050

    Article  Google Scholar 

  152. Xia Y, Yang Z, Mokaya R (2010) CVD Nanocasting Routes to Zeolite-Templated Carbons for Hydrogen Storage. Chem Vap Depos 16:322–328. https://doi.org/10.1002/cvde.201006865

    Article  Google Scholar 

  153. Wang L, Yang RT (2012) Significantly increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping. J Phys Chem C 116:1099–1106

    Article  Google Scholar 

  154. Lee J-S, Joo SH, Ryoo R (2002) Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters. J Am Chem Soc 124:1156–1157. https://doi.org/10.1021/ja012333h

    Article  Google Scholar 

  155. Li Z, Li L, Zhu H et al (2016) Pore size control of porous carbons using novel silica-based copolymer template and their application in supercapacitor. Mater Lett 172:179–183. https://doi.org/10.1016/j.matlet.2016.02.109

    Article  Google Scholar 

  156. Jin X, Ge J, Zhu L et al (2022) Design of hierarchical porous carbon with three-dimensional network through solvent-free nanocasting method for CO2 capture. Fuller Nanotub Carbon Nanostructures 30:1–9. https://doi.org/10.1080/1536383X.2022.2027370

    Article  Google Scholar 

  157. Balahmar N, Lowbridge AM, Mokaya R (2016) Templating of carbon in zeolites under pressure: synthesis of pelletized zeolite templated carbons with improved porosity and packing density for superior gas (CO 2 and H 2) uptake properties. J Mater Chem A 4:14254–14266. https://doi.org/10.1039/C6TA06176A

    Article  Google Scholar 

  158. Montiel-Centeno K, Barrera D, Villarroel-Rocha J et al (2019) CMK-3 nanostructured carbon: Effect of temperature and time carbonization on textural properties and H2 storage. Chem Eng Commun 206:1581–1595. https://doi.org/10.1080/00986445.2019.1615469

    Article  Google Scholar 

  159. Konwar RJ, De M (2013) Effects of synthesis parameters on zeolite templated carbon for hydrogen storage application. Microporous Mesoporous Mater 175:16–24. https://doi.org/10.1016/j.micromeso.2013.03.014

    Article  Google Scholar 

  160. Libbrecht W, Deruyck F, Poelman H et al (2015) Optimization of soft templated mesoporous carbon synthesis using Definitive Screening Design. Chem Eng J 259:126–134. https://doi.org/10.1016/j.cej.2014.07.113

    Article  Google Scholar 

  161. Park H, Terhorst SK, Bera RK et al (2019) Template dissolution with NaOH–HCl in the synthesis of zeolite-templated carbons: Effects on oxygen functionalization and electrical energy storage characteristics. Carbon 155:570–579. https://doi.org/10.1016/j.carbon.2019.09.020

    Article  Google Scholar 

  162. Sahoo MK, Rao GR (2022) A single step solid NH4F-assisted method for the removal of hard silica template to obtain microporous carbon for electrochemical applications. Mater Lett. https://doi.org/10.1016/j.matlet.2021.131373

    Article  Google Scholar 

  163. Hu J, He W, Qiu S et al (2019) Nitrogen-doped hierarchical porous carbons prepared via freeze-drying assisted carbonization for high-performance supercapacitors. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.143643

    Article  Google Scholar 

  164. Kraiwattanawong K (2023) Porosity development of templated porous carbons dried by vacuum as carbon electrodes for electric double-layer capacitors. Chem Eng Sci. https://doi.org/10.1016/j.ces.2022.118401

    Article  Google Scholar 

  165. Tiwari D, Goel C, Bhunia H et al (2016) Novel nanostructured carbons derived from epoxy resin and their adsorption characteristics for CO2 capture. RSC adv 6:97728–97738. https://doi.org/10.1039/C6RA18291G

    Article  Google Scholar 

  166. Langmi HW, Engelbrecht N, Modisha PM et al (2022) Chapter 13 - Hydrogen storage. In: Smolinka T, Garche J (eds) Electrochemical Power Sources: Fundamentals, Systems, and Applications, 1st edn. Elsevier, Amsterdam, pp 455–486

    Chapter  Google Scholar 

  167. Zohuri B (2019) Cryogenics and Liquid Hydrogen Storage: Challenges and Solutions for a Cleaner Future. Hydrogen Energy Challenges and Solutions for a Cleaner Future. Springer, Cham, pp 121–139

    Chapter  Google Scholar 

  168. Cho Y, Cho H, Cho ES (2023) Nanointerface Engineering of Metal Hydrides for Advanced Hydrogen Storage. Chem Mater 35:366–385. https://doi.org/10.1021/acs.chemmater.2c02628

    Article  Google Scholar 

  169. Viswanathan B (2017) Chapter 10 - Hydrogen Storage. In: Viswanathan B (ed) Energy Sources. Elsevier, Amsterdam, pp 185–212

    Chapter  Google Scholar 

  170. Modisha PM, Ouma CNM, Garidzirai R et al (2019) The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers. Energy Fuels 33:2778–2796. https://doi.org/10.1021/acs.energyfuels.9b00296

    Article  Google Scholar 

  171. Pardakhti M, Jafari T, Tobin Z et al (2019) Trends in solid adsorbent materials development for CO2 capture. ACS Appl Mater Interfaces 11:34533–34559. https://doi.org/10.1021/acsami.9b08487

    Article  Google Scholar 

  172. Mosca A, Hedlund J, Ridha FN et al (2008) Optimization of synthesis procedures for structured PSA adsorbents. Adsorption 14:687–693. https://doi.org/10.1007/s10450-008-9126-9

    Article  Google Scholar 

  173. Alam N, Mokaya R (2010) Evolution of optimal porosity for improved hydrogen storage in templated zeolite-like carbons. Energy Environ Sci 3:1773–1781. https://doi.org/10.1039/C0EE00154F

    Article  Google Scholar 

  174. Jeong U, Kim H, Ramesh S et al (2021) Rapid access to ordered mesoporous carbons for chemical hydrogen storage. Angew Chem Int Ed 133:22652–22660. https://doi.org/10.1002/anie.202109215

    Article  Google Scholar 

  175. Guan C, Wang K, Yang C et al (2009) Characterization of a zeolite-templated carbon for H2 storage application. Microporous Mesoporous Mater 118:503–507. https://doi.org/10.1016/j.micromeso.2008.09.029

    Article  Google Scholar 

  176. Stadie NP, Vajo JJ, Cumberland RW et al (2012) Zeolite-templated carbon materials for high-pressure hydrogen storage. Langmuir 28:10057–10063. https://doi.org/10.1021/la302050m

    Article  Google Scholar 

  177. Yang SJ, Kim T, Im JH et al (2012) MOF-Derived Hierarchically Porous Carbon with Exceptional Porosity and Hydrogen Storage Capacity. Chem Mater 24:464–470. https://doi.org/10.1021/cm202554j

    Article  Google Scholar 

  178. Almasoudi A, Mokaya R (2012) Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. J Mater Chem 22:146–152. https://doi.org/10.1039/C1JM13314D

    Article  Google Scholar 

  179. Xia K, Hu J, Jiang J (2014) Enhanced room-temperature hydrogen storage in super-activated carbons: The role of porosity development by activation. Appl Surf Sci 315:261–267. https://doi.org/10.1016/j.apsusc.2014.07.144

    Article  Google Scholar 

  180. Jiang J, Gao Q, Zheng Z et al (2010) Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres. Int J Hydrog Energy 35:210–216. https://doi.org/10.1016/j.ijhydene.2009.10.042

    Article  Google Scholar 

  181. Xia Y, Zhu Y, Tang Y (2012) Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide. Carbon 50:5543–5553. https://doi.org/10.1016/j.carbon.2012.07.044

    Article  Google Scholar 

  182. Campesi R, Cuevas F, Gadiou R et al (2008) Hydrogen storage properties of Pd nanoparticle/carbon template composites. Carbon 46:206–214. https://doi.org/10.1016/j.carbon.2007.11.006

    Article  Google Scholar 

  183. Juárez JM, Gómez MB, Anunziata OA (2015) Preparation and characterization of activated CMK-1 with Zn and Ni species applied in hydrogen storage. Int J Energy Res 39:941–953. https://doi.org/10.1002/er.3298

    Article  Google Scholar 

  184. Xia K, Gao Q, Wu C et al (2007) Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon 45:1989–1996. https://doi.org/10.1016/j.carbon.2007.06.002

    Article  Google Scholar 

  185. Dibandjo P, Zlotea C, Gadiou R et al (2013) Hydrogen storage in hybrid nanostructured carbon/palladium materials: Influence of particle size and surface chemistry. Int J Hydrog Energy 38:952–965. https://doi.org/10.1016/j.ijhydene.2012.10.050

    Article  Google Scholar 

  186. Campesi R, Cuevas F, Leroy E et al (2009) In situ synthesis and hydrogen storage properties of PdNi alloy nanoparticles in an ordered mesoporous carbon template. Microporous Mesoporous Mater 117:511–514. https://doi.org/10.1016/j.micromeso.2008.07.023

    Article  Google Scholar 

  187. Ediati Ratna, Mulyati Tri Ana, Mukminin Amirul et al (2020) Nanoporous Carbon Prepared with MOF-5 as a Template and Activated using KOH for Hydrogen Storage. J Kimia Valensi. https://doi.org/10.15408/jkv.v6i1.13621

    Article  Google Scholar 

  188. Jiang H-L, Liu B, Lan Y-Q et al (2011) From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. J Am Chem Soc 133:11854–11857. https://doi.org/10.1021/ja203184k

    Article  Google Scholar 

  189. Almasoudi A, Mokaya R (2014) Porosity modulation of activated ZIF-templated carbons via compaction for hydrogen and CO2 storage applications. J Mater Chem 2:10960–10968. https://doi.org/10.1039/C4TA00530A

    Article  Google Scholar 

  190. Lu F, Wen L, Zhao Y et al (2019) The competitive adsorption behavior of CO and H2 molecules on FeO surface in the reduction process. Int J Hydrog Energy 44:6427–6436. https://doi.org/10.1016/j.ijhydene.2019.01.173

    Article  Google Scholar 

  191. Pang J, Hampsey JE, Wu Z et al (2004) Hydrogen adsorption in mesoporous carbons. Appl Phys Lett 85:4887–4889. https://doi.org/10.1063/1.1827338

    Article  Google Scholar 

  192. McNicholas TP, Wang A, O’Neill K et al (2010) H2 Storage in Microporous Carbons from PEEK Precursors. J Phys Chem C 114:13902–13908. https://doi.org/10.1021/jp102178z

    Article  Google Scholar 

  193. Blankenship LS, Balahmar N, Mokaya R (2017) Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nat Commun 8:1545. https://doi.org/10.1038/s41467-017-01633-x

    Article  Google Scholar 

  194. Adeniran B, Mokaya R (2015) Compactivation: a mechanochemical approach to carbons with superior porosity and exceptional performance for hydrogen and CO2 storage. Nano Energy 16:173–185. https://doi.org/10.1016/j.nanoen.2015.06.022

    Article  Google Scholar 

  195. Masika E, Mokaya R (2014) Exceptional gravimetric and volumetric hydrogen storage for densified zeolite templated carbons with high mechanical stability. Energy Environ Sci 7:427–434. https://doi.org/10.1039/C3EE42239A

    Article  Google Scholar 

  196. Maulana Kusdhany MI, Lyth SM (2021) New insights into hydrogen uptake on porous carbon materials via explainable machine learning. Carbon 179:190–201. https://doi.org/10.1016/j.carbon.2021.04.036

    Article  Google Scholar 

  197. Xia K, Gao Q, Song S et al (2008) CO2 activation of ordered porous carbon CMK-1 for hydrogen storage. Int J Hydrog Energy 33:116–123. https://doi.org/10.1016/j.ijhydene.2007.08.019

    Article  Google Scholar 

  198. Zhao X, Villar-Rodil S, Fletcher AJ et al (2006) Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials. J Phys Chem B 110:9947–9955. https://doi.org/10.1021/jp060748p

    Article  Google Scholar 

  199. Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389–398. https://doi.org/10.1016/j.cattod.2006.09.015

    Article  Google Scholar 

  200. Ding RG, Lu GQ, Yan ZF et al (2001) Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. J Nanosci Nanotechnol 1:7–29. https://doi.org/10.1166/jnn.2001.012

    Article  Google Scholar 

  201. Treeweranuwat P, Boonyoung P, Chareonpanich M et al (2020) Role of Nitrogen on the Porosity, Surface, and Electrochemical Characteristics of Activated Carbon. ACS Omega 5:1911–1918. https://doi.org/10.1021/acsomega.9b03586

    Article  Google Scholar 

  202. Tian W, Zhang H, Duan X et al (2016) Nitrogen- and Sulfur-Codoped Hierarchically Porous Carbon for Adsorptive and Oxidative Removal of Pharmaceutical Contaminants. ACS Appl Mater Interfaces 8:7184–7193. https://doi.org/10.1021/acsami.6b01748

    Article  Google Scholar 

  203. Chen D, Sun Q, Han C et al (2022) Enhanced oxygen evolution catalyzed by in situ formed Fe-doped Ni oxyhydroxides in carbon nanotubes. J Mater Chem A 10:16007–16015. https://doi.org/10.1039/D2TA04042E

    Article  Google Scholar 

  204. Kiciński W, Szala M, Bystrzejewski M (2014) Sulfur-doped porous carbons: Synthesis and applications. Carbon 68:1–32. https://doi.org/10.1016/j.carbon.2013.11.004

    Article  Google Scholar 

  205. dos Santos TC, Mancera RC, Rocha MV et al (2021) CO2 and H2 adsorption on 3D nitrogen-doped porous graphene: Experimental and theoretical studies. J CO2 Util 48:101517. https://doi.org/10.1016/j.jcou.2021.101517

    Article  Google Scholar 

  206. Wang L, Yang RT (2008) New sorbents for hydrogen storage by hydrogen spillover–a review. Energy Environ Sci 1:268–279. https://doi.org/10.1039/B807957A

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Neda Asasian-Kolur: Conceptualization; Investigation; Data Curation; Writing—Original Draft,

Seyedmehdi Sharifian: Methodology; Investigation; Visualization; Writing—Original Draft,

Bahram Haddadi: Conceptualization; Investigation; Writing—Review & Editing,

Christian Jordan: Conceptualization; Investigation; Writing—Review & Editing,

Michael Harasek: Conceptualization; Supervision; Project administration,

Corresponding author

Correspondence to Seyedmehdi Sharifian.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

Authors confirm that there are no relevant financial or non-financial competing interests to report.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asasian-Kolur, N., Sharifian, S., Haddadi, B. et al. Ordered porous carbon preparation by hard templating approach for hydrogen adsorption application. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04282-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04282-x

Keywords

Navigation