Skip to main content
Log in

Parametric optimization of kraft pulping of wheat straw for extraction of lignin using response surface methodology

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Kraft pulping process is the foremost common pretreatment method utilized in pulp and paper businesses to break down the lignocellulosic linkages to urge cellulose and lignin separated. Due to higher degree of recuperation of the reagents utilized within the process of pulp production having higher cellulosic virtue, this technique rules over others since many decades. A factorial experiment may have star points and centre points added, offering three or five levels for each component. This is known as a central composite design, and it is utilised in response surface modelling. There are a few components to be considered in kraft pulping method which are temperature, retention time, % alkalinity, % sulfidity, and liquor to biomass stacking. The use of Na2S stands for a source of HS, but too for an extra source of NaOH agreeing to the response included in this prepare. In spite of the fact that we have not taken those two components into thought, they can moreover be utilized in future inquire about. Thus, here, we utilized central composite plan to optimize our components. By taking temperature extend of 140–175 °C, time 20–80 min, and % alkalinity 10–20%, we have gotten diverse reactions of greatest bright absorbance wavelength and concentration information of black liquors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No supplementary data.

References

  1. Baruah J, Nath BK, Sharma R et al (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:1–19. https://doi.org/10.3389/fenrg.2018.00141

    Article  Google Scholar 

  2. Korotkova E, Pranovich A, Wärnå J et al (2015) Lignin isolation from spruce wood with low concentration aqueous alkali at high temperature and pressure: influence of hot-water pre-extraction. Green Chem 17:5058–5068. https://doi.org/10.1039/c5gc01341k

    Article  Google Scholar 

  3. Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. Aqueous Pretreat Plant Biomass Biol Chem Convers to Fuels Chem 201–222. https://doi.org/10.1002/9780470975831.ch10

  4. Eugenia Eugenio M, Ibarra D, Martín-Sampedro R et al (2019) Alternative raw materials for pulp and paper production in the concept of a lignocellulosic biorefinery. Cellulose. https://doi.org/10.5772/intechopen.90041

    Article  Google Scholar 

  5. Calvo-Flores FG (2020) Lignin: a renewable raw material. Encycl Renew Sustain Mater 102–118. https://doi.org/10.1016/b978-0-12-803581-8.11517-6

  6. Watkins D, Nuruddin M, Hosur M et al (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32. https://doi.org/10.1016/j.jmrt.2014.10.009

    Article  Google Scholar 

  7. Sun RC, Mark Lawther J, Banks WB (1997) Physico-chemical characterization of organosolv lignins from wheat straw. Cellul Chem Technol 31:199–212

    Google Scholar 

  8. Nitsos C, Rova U, Christakopoulos P (2018) Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energies 11. https://doi.org/10.3390/en11010050

  9. Ardina V, Irawan B, Prajitno DH, Roesyadi A (2018) Active alkali charge effect on kraft pulping process of acacia mangium and eucalyptus pellita. AIP Conf Proc 2014. https://doi.org/10.1063/1.5054440

  10. Vicentim M, de Almeida Faria R, Ferraz A (2009) High-yield kraft pulping of Eucalyptus grandis Hill ex Maiden biotreated by Ceriporiopsis subvermispora under two different culture conditions. De Gruyter 63(4):408–413. https://doi.org/10.1515/HF.2009.067

    Article  Google Scholar 

  11. Alén R (2019) Pulp and paper. Encycl Anal Sci 425–431. https://doi.org/10.1016/B978-0-12-409547-2.14014-4

  12. Sixta H (2006) Handbook of pulp, vol 2. WILEY-VCH VERLAG

  13. Maan P, Kadam A, Kumar A et al (2018) Process parameters optimization of Casuarina equisetifolia for enhanced production of bleachable grade kraft pulp through RSM. BioRes 13(4):8802–8813

    Article  Google Scholar 

  14. Huang C, Chu Q, Xie Y et al (2015) Effect of kraft pulping pretreatment on the chemical composition, enzymatic digestibility, and sugar release of moso bamboo residues. BioResources 10:240–255. https://doi.org/10.15376/biores.10.1.240-255

    Article  Google Scholar 

  15. Jablonský M, Kočiš J, Ház A, Šima J (2015) Characterization and comparison by UV spectroscopy of precipitated lignins and commercial lignosulfonates. Cellul Chem Technol 49:267–274

    Google Scholar 

  16. Tian Z, Zong L, Niu R, et al (2015) Recovery and characterization of lignin from alkaline straw pulping black liquor: as feedstock for bio-oil research. J Appl Polym Sci 132. https://doi.org/10.1002/APP.42057

  17. Agrawal PK (2014) Natural product communications: Editorial. Nat Prod Commun 9(8)

  18. Biswas B, Pandey N, Bisht Y et al (2017) Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol 237:57–63. https://doi.org/10.1016/j.biortech.2017.02.046

    Article  Google Scholar 

  19. Danish M, Naqvi M, Farooq U, Naqvi S (2015) Characterization of South Asian agricultural residues for potential utilization in future ‘energy mix.’ Energy Procedia 75:2974–2980. https://doi.org/10.1016/j.egypro.2015.07.604

    Article  Google Scholar 

  20. Cuiping L, Chuangzhi W, Yanyongjie HH (2004) Chemical elemental characteristics of biomass fuels in China. Biomass Bioenerg 27:119–130. https://doi.org/10.1016/j.biombioe.2004.01.002

    Article  Google Scholar 

  21. Wang X, Yang Z, Liu X et al (2020) The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Manag 110:87–97. https://doi.org/10.1016/j.wasman.2020.05.018

    Article  Google Scholar 

  22. Ma Y, Li H, Yang H et al (2021) Effects of solid acid and base catalysts on pyrolysis of rice straw and wheat straw biomass for hydrocarbon production. J Energy Inst. https://doi.org/10.1016/j.joei.2021.08.010

    Article  Google Scholar 

  23. Kumar M, Upadhyay SN, Mishra PK (2019) A comparative study of thermochemical characteristics of lignocellulosic biomasses. Bioresour Technol Reports 8:100186. https://doi.org/10.1016/j.biteb.2019.100186

    Article  Google Scholar 

  24. Oriez V, Peydecastaing J, Pontalier PY (2020) Lignocellulosic biomass mild alkaline fractionation and resulting extract purification processes: conditions, yields, and purities. Clean Technol 2:91–115. https://doi.org/10.3390/cleantechnol2010007

    Article  Google Scholar 

  25. GharehBagh FS, Ray S, Seth R (2021) Optimizing lignin extraction from kraft black liquor using protic ionic liquids. Biomass Bioenergy 154:106249. https://doi.org/10.1016/j.biombioe.2021.106249

    Article  Google Scholar 

  26. Pérez E, Abad-Fernández N, Lourençon T et al (2022) Base-catalysed depolymerization of lignins in supercritical water: influence of lignin nature and valorisation of pulping and biorefinery by-products. Biomass Bioenergy 163:106536. https://doi.org/10.1016/j.biombioe.2022.106536

    Article  Google Scholar 

  27. Liu T, Wang P, Tian J et al (2022) Enzymatic saccharification promotion for bioenergy poplar under green liquor pretreatment by fully sulfonated polystyrene: effect of molecular weight. Bioresour Technol 363:127904. https://doi.org/10.1016/j.biortech.2022.127904

    Article  Google Scholar 

  28. Zhang L, Zhang Z, Chen K, Wu Y (2021) Promoting catalytic hydrogenolysis degradation of black liquor crude lignin by extended soda-oxygen cooking. Ind Crops Prod 170:113788. https://doi.org/10.1016/j.indcrop.2021.113788

    Article  Google Scholar 

  29. Skulcova AB, Jablonsky M (2017) UV/Vis spectrometry as a quantification tool for lignin solubilized in deep eutectic solvents. https://doi.org/10.15376/biores.12.3.6713-6722

  30. Sameni J, Krigstin S, Sain M (2017) Solubility of lignin and acetylated lignin in organic solvents. BioResources 12:1548–1565. https://doi.org/10.15376/biores.12.1.1548-1565

    Article  Google Scholar 

  31. Sadeghifar H, Ragauskas A (2020) Lignin as a UV Light blocker-a review. Polymers (Basel) 12:1–10. https://doi.org/10.3390/POLYM12051134

    Article  Google Scholar 

  32. Ghalibaf M, Alén R, Hita I et al (2022) Valorization potential of technical lignins from Norway spruce (Picea abies) via pyrolysis. J Anal Appl Pyrolysis 165:105549. https://doi.org/10.1016/j.jaap.2022.105549

    Article  Google Scholar 

  33. Pauline AL, Joseph K (2021) Hydrothermal carbonization of crude oil sludge –characterization of hydrochar and hydrothermal liquor. Process Saf Environ Prot 154:89–96. https://doi.org/10.1016/j.psep.2021.08.014

    Article  Google Scholar 

  34. Hansen B, Kusch P, Schulze M, Kamm B (2016) Qualitative and quantitative analysis of lignin produced from beech wood by different conditions of the Organosolv process. J Polym Environ 24:85–97. https://doi.org/10.1007/s10924-015-0746-3

    Article  Google Scholar 

  35. Ajao O, Jeaidi J, Benali M, et al (2018) Quantification and variability analysis of lignin optical properties for colour-dependent industrial applications. Molecules 23. https://doi.org/10.3390/molecules23020377

  36. Wen JL, Sun SL, Xue BL, Sun RC (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials (Basel) 6:359–391. https://doi.org/10.3390/ma6010359

    Article  Google Scholar 

  37. Hawkes GE, Smith CZ, Utley JHP et al (1993) A comparison of solution and solid state 13C NMR spectra of lignins and lignin model compounds. Holzforschung 47:302–312. https://doi.org/10.1515/hfsg.1993.47.4.302

    Article  Google Scholar 

  38. Ralph J, Landucci L (2010) Chapter 5: NMR of lignins. In: Heitner C, Dimmel DR, Schmidt JA (eds) Lignin and lignans: Advances in chemistry. CRC Press (Taylor & Francis Group), Boca Raton FL, pp 137–243

  39. Chen CL, Robert D (1988) Characterization of lignin by 1H and 13C NMR spectroscopy. Methods Enzymol 161:137–174. https://doi.org/10.1016/0076-6879(88)61017-2

    Article  Google Scholar 

  40. Saboe PO, Tomashek EG, Monroe HR et al (2022) Recovery of low molecular weight compounds from alkaline pretreatment liquor via membrane separations††Electronic supplementary information (ESI) available. Green Chem 24:3152–3166. https://doi.org/10.1039/d2gc00075j

    Article  Google Scholar 

  41. Cipriano DF, Chinelatto LS, Nascimento SA et al (2020) Potential and limitations of 13C CP/MAS NMR spectroscopy to determine the lignin content of lignocellulosic feedstock. Biomass Bioenergy 142:105792. https://doi.org/10.1016/j.biombioe.2020.105792

    Article  Google Scholar 

  42. Suzuki S, Kurachi S, Wada N, Takahashi K (2021) Selective modification of aliphatic hydroxy groups in lignin using ionic liquid. Catalysts 11:1–17. https://doi.org/10.3390/catal11010120

    Article  Google Scholar 

  43. Hynynen J, Riddell A, Achour A et al (2021) “Lignin and extractives first” conversion of lignocellulosic residual streams using UV light from LEDs. Green Chem 23:8251–8259. https://doi.org/10.1039/d1gc02543k

    Article  Google Scholar 

  44. Gordobil O, Herrera R, Poohphajai F et al (2021) Impact of drying process on kraft lignin: lignin-water interaction mechanism study by 2D NIR correlation spectroscopy. J Market Res 12:159–169. https://doi.org/10.1016/j.jmrt.2021.02.080

    Article  Google Scholar 

  45. Svenningsson L, Bengtsson J, Jedvert K et al (2021) Disassociated molecular orientation distributions of a composite cellulose–lignin carbon fiber precursor: a study by rotor synchronized NMR spectroscopy and X-ray scattering. Carbohydr Polym 254:117293. https://doi.org/10.1016/j.carbpol.2020.117293

    Article  Google Scholar 

  46. Rana M, Nshizirungu T, Park J-H (2021) Synergistic effect of water-ethanol-formic acid for the depolymerization of industrial waste (black liquor) lignin to phenolic monomers. Biomass Bioenergy 153:106204. https://doi.org/10.1016/j.biombioe.2021.106204

    Article  Google Scholar 

  47. Mei Q, Shen X, Liu H et al (2019) Selective utilization of methoxy groups in lignin for: N -methylation reaction of anilines. Chem Sci 10:1082–1088. https://doi.org/10.1039/c8sc03006e

    Article  Google Scholar 

  48. Lu F, Wang C, Chen M et al (2021) A facile spectroscopic method for measuring lignin content in lignocellulosic biomass. Green Chem 23:5106–5112. https://doi.org/10.1039/d1gc01507a

    Article  Google Scholar 

  49. Katahira R, Elder TJ, Beckham GT (2018) Chapter-1: A brief introduction to lignin structure. In: Beckham GT (ed) Lignin valorization: Emerging approaches, pp 1–20. https://doi.org/10.1039/9781788010351-00001

Download references

Author information

Authors and Affiliations

Authors

Contributions

Subhrajeet Dash—Investigation, Validation, Writing-original draft, Writing-review and editing.

Anjireddy Bhavanam—Conceptualization, Methodology, Writing-review and editing, Supervision, Project administration.

Poonam Gera—Visualization, Writing-review and editing, Supervision, Project administration.

Corresponding author

Correspondence to Anjireddy Bhavanam.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S., Bhavanam, A. & Gera, P. Parametric optimization of kraft pulping of wheat straw for extraction of lignin using response surface methodology. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04011-4

Keywords

Navigation