Skip to main content

Advertisement

Log in

Sugarcane bagasse as an environmentally friendly composite material to face the sustainable development era

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Natural fiber-reinforced composites have attracted interest along with public and industry awareness of the depletion of non-renewable material resources. Considerations of environmental friendliness and low cost have provided a stimulus for researchers to identify green materials that provide a low pollutant index. The high cellulose content in sugarcane bagasse is quite attractive in manufacturing composite materials due to abundant raw materials and low processing costs. Based on their characteristics, sugarcane bagasse composites have advantages in the form of being more flexible, high strength, high tensile strength, easy to shape and adjust, and cheaper. Therefore, the composite of sugarcane bagasse biopolymer can be developed in this era and the future generation. The main ingredients for making biocomposites from sugarcane bagasse are sugarcane bagasse, additional strengthening agents, bonding agents, and alkali. This composite will have strong, flexible, and adaptable properties if processed properly. Composites from sugarcane biopolymer waste can be applied in various sectors such as construction, food, furniture, automotive, and health. Using sugarcane bagasse as a renewable composite material will support various engineering that can be carried out from the process of utilizing sugarcane bagasse waste to manufacture environmentally friendly materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable

Abbreviations

AlCaP:

Alummunium calcium phosphate

ZCaP:

Zinc – calcium phosphorous oxid

ACNC:

All-cellulose nanocomposite

DMAc:

Dimethyl acetamide

APS:

Ammonium persulfate

DBSA:

Dodecylbenzene sulfonic acid

TGA:

Thermal gravimetric analysis

FTIR:

Fourier transform infrared

DSC:

Differential scanning calorimeter

SEM:

Scanning electron microscope

TPC:

Total phenolic content

TEAC:

Trolox equivalent antioxidant capacity

SPF:

Sun protection factor

PLA:

Poly (lactic acid)

TEM:

Transmission electron microscope

TG:

Thermogravimetriy analysis

DTG:

Derivative thermogravimetry analysis

References

  1. Tu K, Ding Y, Keplinger T (2022) Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr Polym 291(April): 119539. https://doi.org/10.1016/j.carbpol.2022.119539.

  2. Vaneewari N, Saranya DV (2021) Effect of silane coupling agent on the mechanical steel of sugarcane baggase and polypropylene composites. Mater Today Proc, xxxx. https://doi.org/10.1016/j.matpr.2021.02.579.

  3. Britannica E (2022) “Selulosa,” Ensiklopedia Britannica. Ensiklopedia Britannica, p 1

  4. Hajar EWI, Purba AFW, P (2016) Handayani, and Maridah, “Proses Pemurnian Minyak Jelantah Menggunakan Ampas Tebu Untuk Pembuatan Sabun Padat.” J Integrasi Proses 6(2):57–63

    Google Scholar 

  5. Asrofi M, Sapuan SM, Ilyas RA, Ramesh M (2020) Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: effect of time duration of ultrasonication (bath-type). Mater Today Proc 46:1626–1630. https://doi.org/10.1016/j.matpr.2020.07.254

    Article  Google Scholar 

  6. Madhoushi M, Malakani A, Ebrahimi G, Rashidi A (2021) Influence of spherical-shaped carbon nanoparticles on the mechanical properties of a foamed sugarcane bagasse/polypropylene composite. Ind Crops Pro 172. https://doi.org/10.1016/j.indcrop.2021.114041.

  7. Badan Pusat Statistik (2021) Statistik Tebu Indonesia 2020 20. Jakrta: Badan Pusat Statistik

  8. Varshney D, Mandade P,  Shastri Y (2018) Optimization based design of an industrial cluster for economic and environmental benefits,” in 28th European Symposium on Computer Aided Process Engineering, vol. 43, A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov, and T. Wallek, Eds. Elsevier, 2018, pp. 717–722. https://doi.org/10.1016/B978-0-444-64235-6.50127-3

  9. Martin RH, Giannis S, Mirza S, Hansen K (2009) BioComposites in challenging automotive applications

  10. Chawla KK (2019) Composite Materials: Science and Engineering [Book]

  11. Rajak DK, Pagar DD, Behera A,  Menezes PL (2022) Role of composite materials in automotive sector: potential applications  in Advances in Engine Tribology, V. Kumar, A. K. Agarwal, A. Jena, and R. K. Upadhyay, Eds. Singapore: Springer Singapore, pp. 193–217. https://doi.org/10.1007/978-981-16-8337-4_10.

  12. Sanjay MR, Arpitha GR, Naik LL, Gopalakrishna K, Yogesha B (2016) Applications of natural fibers and its composites: an overview. Natural Resources 07(03):108–114. https://doi.org/10.4236/nr.2016.73011

    Article  Google Scholar 

  13. Sumono A, Warna Aju Fatmawati D, Ilmu Kedokteran Gigi Dasar Fakultas Kedokteran Gigi B, Jember U, Konservasi B, Kedokteran Gigi F (2015) Review: Penggunaan Matriks Composite Absorbable di Bidang Kedokteran Gigi

  14. Gautam K, et al (2022) Bioresource technology production of biopolymers from food waste : constrains and perspectives. Bioresour Technol 361(127650). https://doi.org/10.1016/j.biortech.2022.127650.

  15. Faria M, Gomes M, Mendonça I, Kaufmann M, Ferreira A, Cordeiro N (2022) Bacterial cellulose biopolymers : the sustainable solution to water-polluting microplastics 222. https://doi.org/10.1016/j.watres.2022.118952.

  16. Sari NH, Dwi Catur A,  Safii A. (2019) Komposit Epoksi Diperkuat Serat Corypha Utan: Karakterisasi Morpologi, Kekuatan Tarik Dan kekuatan Lentur Jurnal Energi Dan Manufaktur 12(1) 27. https://doi.org/10.24843/jem.2019.v12.i01.p05.

  17. Fakhrin H (2019) Pemanfaatan Serat Tebu Sebagai Penguat Pada Komposit Dengan Matriks Polyester Untuk Pembuatan Papan Skateboard. Universitas Muhammadiyah Sumatera Utara, Sumtera Utara, Teknik Mesin

    Google Scholar 

  18. Kumari N, Sarangi SK (2022) Bagasse reinforced epoxy-based green composite for orthotic callipers: a tribological study. Mater Today Proc 56:1156–1159. https://doi.org/10.1016/j.matpr.2021.11.137

    Article  Google Scholar 

  19. Laksono AD, Susanto TF, Dikman R, Awali J, Sasria N, Wardhani IY (2022) Mechanical properties of particleboards produced from wasted mixed sengon (Paraserianthes falcataria (L.) Nielsen) and bagasse particles Mater Today Proc  xxxx, https://doi.org/10.1016/j.matpr.2022.01.199.

  20. Basri ST. Bakhtiar NH (2015) Sintesa Bioplastik Komposit Limbah Ampas Tahu dan Ampas Tebu Seminar Nasional Teknik Kimia Indonesia  5. pp. 123–124

  21. Ghaderi M, Mousavi M, Yousefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104(1):59–65. https://doi.org/10.1016/j.carbpol.2014.01.013

    Article  Google Scholar 

  22. Youssef AH, Ismail MR, Ali MAM, Zahran AH (2009) Studies on sugarcane bagasse fiber-thermoplastics composites. J Elastomers Plast 41(3):245–262. https://doi.org/10.1177/0095244308095014

    Article  Google Scholar 

  23. el Miri N et al (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167. https://doi.org/10.1016/j.carbpol.2015.04.051

    Article  Google Scholar 

  24. Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91(2):711–717. https://doi.org/10.1016/j.carbpol.2012.08.057

    Article  Google Scholar 

  25. Rodríguez-González C, Martínez-Hernández AL, Castanõ VM, O. v. Kharissova, R. S. Ruoff, and C. Velasco-Santos, (2012) Polysaccharide nanocomposites reinforced with graphene oxide and keratin-grafted graphene oxide. Ind Eng Chem Res 51(9):3619–3629. https://doi.org/10.1021/ie200742x

    Article  Google Scholar 

  26. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  Google Scholar 

  27. Mahmud MA, Anannya FR (2021) Sugarcane bagasse - a source of cellulosic fiber for diverse applications. Heliyon 7(8):e07771. https://doi.org/10.1016/j.heliyon.2021.e07771

    Article  Google Scholar 

  28. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86(3):1291–1299. https://doi.org/10.1016/j.carbpol.2011.06.030

    Article  Google Scholar 

  29. Jacobsen SE, Wyman CE (2002) Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. https://doi.org/10.1021/ie001025.

  30. Sutrisno TA, Suryanto H, Wulandari R, Muhajir M, Zahari SMSNS (2019) The effect of chemical pretreatment process on mechanical properties and porosity of cellulose bacterial film. J Mech Eng Sci Technol 3(1):8–17. https://doi.org/10.17977/um016v3i12019p008

    Article  Google Scholar 

  31. Pradana MA, Ardhyananta H, Farid M (2017) Pemisahan Selulosa dari Lignin Serat Tandan Kosong Kelapa Sawit dengan Proses Alkalisasi untuk Penguat Bahan Komposit Penyerap Suara. Jurnal Teknik ITS 6(2):413–416. https://doi.org/10.12962/j23373539.v6i2.24559

    Article  Google Scholar 

  32. Ramlee NA, Naveen J, Jawaid M (2021) Potential of oil palm empty fruit bunch (OPEFB) and sugarcane bagasse fibers for thermal insulation application – a review,” Construction and Building Materials, vol. 271. Elsevier Ltd, Feb. 15.  https://doi.org/10.1016/j.conbuildmat.2020.121519.

  33. Li Z, Zhang X, Fa C, Zhang Y, Xiong J, Chen H (2020) Investigation on characteristics and properties of bagasse fibers: performances of asphalt mixtures with bagasse fibers. Constr Build Mater 248 118648.  https://doi.org/10.1016/j.conbuildmat.2020.118648.

  34. Chidhananda RS, Navaneeth B (2022) Fabrication and testing of bagasse and coir fibre reinforced composite material. Mater Today: Proceedings 54:179–186. https://doi.org/10.1016/j.matpr.2021.08.208

    Article  Google Scholar 

  35. Bartos A. et al (2020) Reinforcement of polypropylene with alkali-treated sugarcane bagasse fibers: mechanism and consequences. Compos Sci Technol 200. https://doi.org/10.1016/J.COMPSCITECH.2020.108428.

  36. Bartos A, Kócs J, Anggono J, Móczó J, Pukánszky B (2021) Effect of fiber attrition, particle characteristics and interfacial adhesion on the properties of PP/sugarcane bagasse fiber composites. Polym Test 98.  https://doi.org/10.1016/j.polymertesting.2021.107189.

  37. Asrofi M, Sapuan SM, Ilyas RA, Ramesh M (2020) Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: effect of time duration of ultrasonication (Bath-Type). Materials Today: Proceedings 46:1626–1630. https://doi.org/10.1016/j.matpr.2020.07.254

    Article  Google Scholar 

  38. Facundo Bellomo GRA, G. L. A, A. B. A, L. N. A, S. O. B (2019) Mechanical behaviour of cementitious composites reinforced with

  39. Ruano G, Bellomo F, López G, Bertuzzi A, Nallim L, Oller S (2020) Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Constr Build Mater 240. https://doi.org/10.1016/j.conbuildmat.2019.117856.

  40. Scarpini Candido V, Neves Monteiro S (2016) Tensile behavior of epoxy composites reinforced with thinner fibers of sugarcane bagasse. in Materials Science Forum, vol. 869, pp. 221–226. https://doi.org/10.4028/www.scientific.net/MSF.869.221.

  41. Vidyashri V, Lewis H, Narayanasamy P, Mahesha GT, Bhat KS (2019) Preparation of chemically treated sugarcane bagasse fiber reinforced epoxy composites and their characterization. Cogent Eng 6(1). https://doi.org/10.1080/23311916.2019.1708644.

  42. Jayamani E et al (2020) Comparative study of fly ash/sugarcane fiber reinforced polymer composites properties

  43. Anidha S, Latha N, Muthukkumar M (2019) Reinforcement of aramid fiber with bagasse epoxy bio-degradable composite: investigations on mechanical properties and surface morphology. J Market Res 8(3):3198–3212. https://doi.org/10.1016/j.jmrt.2019.05.008

    Article  Google Scholar 

  44. Fahril H (2019) PEMANFAATAN SERAT TEBU SEBAGAI PENGUAT PADA KOMPOSIT DENGAN MATRIKS POLYESTER Untuk Pembuatan PAPAN SKATEBOARD. Pengaruh Prosentase Foam Terhadap Kuat Tekan Dan Berat Volume Beton Ringan Selular (Clc) Dengan Menggunakan Bahan Tambah Superplasticizer, no. Clc, pp. 1–74

  45. Chandradass J, Amutha Surabhi M, Baskara Sethupathi P, Jawahar P (2020) Development of low cost brake pad material using asbestos free sugarcane bagasse ash hybrid composites. Mater Today Proc 45:7050–7057. https://doi.org/10.1016/j.matpr.2021.01.877

    Article  Google Scholar 

  46. Muthalagu R, Murugesan J, Sathees Kumar S, Sridhar Babu B (2021) Tensile attributes and material analysis of kevlar and date palm fibers reinforced epoxy composites for automotive bumper applications. Mater Today Proc 46:433–438. https://doi.org/10.1016/j.matpr.2020.09.777

    Article  Google Scholar 

  47. Thompson IAND (2005) 5 - Biocomposites, in Woodhead Publishing Series in Biomaterials, Hench LL, J. R. B. T.-B. Jones Artificial Organs and Tissue Engineering, Eds. Woodhead Publishing, pp. 48–58 https://doi.org/10.1533/9781845690861.1.48.

  48. Chidhananda RS, Navaneeth B (2022) Fabrication and testing of bagasse and coir fibre reinforced composite material. Mater Today Proc 54:179–186. https://doi.org/10.1016/j.matpr.2021.08.208

    Article  Google Scholar 

  49. Bartos A et al. (2021) Biobased PLA/sugarcane bagasse fiber composites: effect of fiber characteristics and interfacial adhesion on properties. Compos Part A Appl Sci Manuf 143. https://doi.org/10.1016/j.compositesa.2021.106273.

  50. Hajiha H,  Sain M (2015) The use of sugarcane bagasse fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials 525–549. https://doi.org/10.1533/9781782421276.4.525.

  51. Loh YR, Sujan D, Rahman ME, Das CA (2013) Review sugarcane bagasse - the future composite material: a literature review. Resour Conserv Recycl 75:14–22. https://doi.org/10.1016/j.resconrec.2013.03.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Heri Septya Kusuma: conceptualization, writing — review and editing, and supervision. Dita Permatasari, Wakhid Khoirul Umar, Sanjay K. Sharma: investigation and writing — original draft.

Corresponding author

Correspondence to Heri Septya Kusuma.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusuma, H.S., Permatasari, D., Umar, W.K. et al. Sugarcane bagasse as an environmentally friendly composite material to face the sustainable development era. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03764-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03764-2

Keywords

Navigation