Skip to main content
Log in

Isolation, chemical characterization and in vitro bioactive potential of polysaccharides from seaweed Portieria hornemannii

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The goal of this work is to isolate biopolymers from P. hornemannii and assess their chemical composition, structural characteristics and possible antibacterial, antioxidant and anti-diabetic activities. Seaweed P. hornemannii was used to extract the polysaccharides, which were determined to be 34% and contained 1.50% nitrogen, 20.55% carbon and 3.23% of hydrogen. The chemical components such as total carbohydrate, moisture and ash were estimated in polysaccharide from seaweed P. hornemannii and the results were found to be 71, 8 and 3%, respectively. The active functional groups alkyl halide (C–Br), alkyl halide (C-F), alkane (-C-H), alkene (= C-H) and alcohol (O–H) were recorded at the peak between 455.20 and 3429.43 cm−1 by IR spectra and –OH alcohol monomeric, alkyne methine and acetal protons were observed in proto NMR, respectively. In SEM analysis cross linkage, rough surface with porosity and voids surface morphology has been noted. The antibiotic potential of polysaccharides was studied against clinical pathogens and showed maximum activity of 21 and 18 mm zone of inhibition against Vibrio cholerae and Staphylococcus aureus strains at 600 µg/ml concentrations. In antioxidant scavenging screening, the polysaccharide has shown a promising scavenging effect against total antioxidant, DPPH, ferrous chelating and hydroxyl radicals in vitro assays in higher concentrations. The potential antidiabetic effects of polysaccharides were revealed in 79% and 61% α-amylase and β-glucosidase enzymes inhibition at 1000 µg/ml. Seaweed polysaccharide can be used in pharmaceutical industry also as novel multifunctional drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Yuan YV, Carrington MF, Walsh NA (2005) Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 43(7):1073–1081

    Article  Google Scholar 

  2. Bansemir A, Blume M, Schröder S, Lindequist U (2006) Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252(1):79–84

    Article  Google Scholar 

  3. Chew YL, Lim YY, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Sci Technol 41(6):1067–1072

    Article  Google Scholar 

  4. Dawes CJ, Orduna-Rojas J, Robledo D (1998) Response of the tropical red seaweed Gracilaria cornea to temperature salinity and irradiance. J Appl Phycol 10(5):419

    Article  Google Scholar 

  5. Lobban CS, Harrison PJ, Duncan MJ (1985) The physiological ecology of seaweeds. Cambridge University Press, Cambridge

    Google Scholar 

  6. Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26:259–315

    Google Scholar 

  7. Siddhanta AK, Goswami AM, Shanmugam M, Mody KH, Ramavat BK, Mairh OP (2002) Sulphated galactans of marine red alga Laurencia spp (Rhodomelaceae Rhodophyta) from the west coast of India. Indian J Mar Sci 31:305–309

    Google Scholar 

  8. Watson K, Gooderham NJ, Davies DS, Edwards RJ (1999) Interaction of the transactivating protein HIV-1 tat with sulphated polysaccharides. Biochem Pharmacol 57(7):775–783

    Article  Google Scholar 

  9. Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47(4):1460–1466

    Article  Google Scholar 

  10. Shan BE, Yoshida Y, Kuroda E, Yamashita U (1999) Brief communication immunomodulating activity of seaweed extract on human lymphocytes in vitro. Int J Immunopharmacol 21(1):59–70

    Article  Google Scholar 

  11. Koyanagi S, Nakagawa H, Kuramoto Y, Ohdo S, Soeda S, Shimeno H (2003) Optimizing the dosing schedule of TNP-470 [O-(chloroacetyl-carbamoyl) fumagillol] enhances its antitumor and antiangiogenic efficacies. J Pharmacol Exp Ther 304(2):669–674

    Article  Google Scholar 

  12. Ale MT (2012) Fucose-containing sulfated polysaccharides from brown seaweed: extraction technology and biological activity assessment (Doctoral dissertation PhD Thesis DTU Chemical Engineering: Denmark)

  13. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96(2):683–720

    Article  Google Scholar 

  14. Krishnan G (1975) Nature of tunicin and its interaction with other chemical components of the tunic of the ascidian Polyclinum madrasensis Sebastian. Indian J Exp Biol 13(2):172

    Google Scholar 

  15. Belton PS, Tanner SF, Cartier N, Chanzy H (1989) High-resolution solid-state carbon-13 nuclear magnetic resonance spectroscopy of tunicin an animal cellulose. Macromolecules 22(4):1615–1617

    Article  Google Scholar 

  16. Cima F, Ballarin L, Bressa G, Martinucci G, Burighel P (1996) Toxicity of organotin compounds on embryos of a marine invertebrate (Styela plicata; Tunicata). Ecotoxicol Environ Saf 35(2):174–182

    Article  Google Scholar 

  17. Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931

    Article  Google Scholar 

  18. Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic Press, London, pp 195–285

    Chapter  Google Scholar 

  19. Usov AI (1998) Structural analysis of red seaweed galactans of agar and carrageenan groups. Food Hydrocolloids 12(3):301–308

    Article  Google Scholar 

  20. Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA (2004) Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 84(4):551–562

    Article  Google Scholar 

  21. Duan XJ, Zhang WW, Li XM, Wang BG (2006) Evaluation of antioxidant property of extract and fractions obtained from a red alga Polysiphonia urceolata. Food Chem 95(1):37–43

    Article  Google Scholar 

  22. May L, Lefkowitch J, Kram M, Rubin D (2003) Mixd hepatocellular cholestatic liver injury after pioglitazone therapy. Annal Int Med 136:449–452

    Article  Google Scholar 

  23. Kim MJ, Kim HK (2006) Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice. Life Sci 79(24):2288–2292

    Article  Google Scholar 

  24. Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P, Santamaria P, Locksley RM, Krummel MF, Bluestone JA (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7(1):83

    Article  Google Scholar 

  25. McTernan P, Kumar S (2004) Pathogenesis of obesity-related type 2 diabetes. Obesity and diabetes, pp 49–78

  26. Wild SH, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030: response to Rathman and Giani. Diabetes Care 27(10):2569–2569

    Article  Google Scholar 

  27. Tiwari P, Rahuja N, Kumar R, Lakshmi V, Srivastava MN, Agarwal SC, Raghubir R, Srivastava AK (2008) Search for antihyperglycemic activity in few marine flora and fauna. Indian J Sci Technol 1(5):1–5

    Article  Google Scholar 

  28. Sun L, Feng K, Jiang R, Chen J, Zhao Y, Ma R, Tong H (2010) Watersoluble polysaccharide from Bupleurum chinense DC: isolation structural features and antioxidant activity. Carbohydr Polym 79:180–183

    Article  Google Scholar 

  29. Siddhanta AK, Shanmugam M, Mody KH, Goswami AM, Ramavat BK (1999) Sulphated polysaccharides of Codium dwarkense Boergs. from the west coast of India: chemical composition and blood anticoagulant activity. Int J Biol Macromol 26(2–3):151–154

    Article  Google Scholar 

  30. Staub AM (1965) Removeal of protein-Sevag method. Methods Carbohydr Chem 5:5–6

    Google Scholar 

  31. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  Google Scholar 

  32. You X, Xie C, Liu K, Gu Z (2010) Isolation of non-starch polysaccharides from bulb of tiger lily (Lilium lancifolium Thunb.) with fermentation of Saccharomyces cerevisiae. Carbohydr Polym 81(1):35–40

    Article  Google Scholar 

  33. Moovendhan M, Ramasubburayan R, Vairamani S, Shanmugam A, Palavesam A, Immanuel G (2015) Antibiotic efficacy and characterization of mangrove metabolites against UTI microbes. J Herbs Spices Med Plants 21(2):129–139

    Article  Google Scholar 

  34. Lingnert H, Vallentin K, Eriksson CE (1979) Measurement of antioxidative effect in model system. J Food Process Preserv 3(2):87–103

    Article  Google Scholar 

  35. Seedevi P, Moovendhan M, Viramani S, Shanmugam A (2017) Bioactive potential and structural chracterization of sulfated polysaccharide from seaweed (Gracilaria corticata). Carbohyd Polym 155:516–524

    Article  Google Scholar 

  36. Decker EA, Welch B (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38(3):674–677

    Article  Google Scholar 

  37. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28(4):1057–1060

    Article  Google Scholar 

  38. Apostolidis E, Lee CM (2010) In vitro potential of Ascophyllum nodosum phenolic antioxidant mediated α-glucosidase and α-amylase inhibition. J Food Sci 75(3):H97–H102

    Article  Google Scholar 

  39. Kim KY, Nguyen TH, Kurihara H, Kim SM (2010) α-glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J Food Sci 75(5):H145–H150

    Google Scholar 

  40. Johnson EL, Peniston QP (1982) Utilization of shell fish waste for chitin chitosan production in chemistry and bio-chemistry of marine food products (Martin RE, Flick GJ,Hebard CE, Ward DR, eds) AVI Publishing Co Westport CT USA 415–428

  41. Younes I, Ghorbel-Bellaaj O, Nasri R, Chaabouni M, Rinaudo M, Nasri M (2012) Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem 47:2032–2039

    Article  Google Scholar 

  42. Sila A, Mlaik N, Sayari N, Balti R, Bougatef A (2014) Chitin and chitosan extracted from shrimp waste using fish proteases aided process: efficiency of chitosan in the treatment of unhairing effluents. J Polym Environ 22(1):78–87

    Article  Google Scholar 

  43. Venugopal V (2019) Sulfated and non-sulfated polysaccharides from seaweeds and their uses: an overview. ECronicon Nutr 2:126–141

    Google Scholar 

  44. Gomez-Ordonez E, Jimenez-Escrig A, Ruperez P (2010) Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res Int 43(9):2289–2294

    Article  Google Scholar 

  45. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23(3):543–597

    Article  Google Scholar 

  46. Bouhlal R, Haslin C, Chermann JC, Colliec-Jouault S, Sinquin C, Simon G, Cerantola S, Riadi H, Bourgougnon N (2011) Antiviral activities of sulfated polysaccharides isolated from Sphaerococcus coronopifolius (Rhodophytha Gigartinales) and Boergeseniella thuyoides (Rhodophyta Ceramiales). Mar Drugs 9(7):1187–1209

    Article  Google Scholar 

  47. Mao W, Zang X, Li Y, Zhang H (2006) Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. J Appl Phycol 18(1):9–14

    Article  Google Scholar 

  48. Alves A, Caridade SG, Mano JF, Sousa RA, Reis RL (2010) Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr Res 345:2194–2200

    Article  Google Scholar 

  49. Synytsya A, Kim WJ, Kim SM, Pohl R, Synytsya A, Kvasnicka F, Copíkova J, Park YI (2010) Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohyd Polym 81(1):41–48

    Article  Google Scholar 

  50. Park JK, Kim Z, Lee CG, Synytsya A, Jo HS, Kim SO, Park JW (2011) Characterization and immuno stimulating activity of a water-soluble polysaccharide isolated from Haematococcus lacustris. Biotechnol Bioprocess Eng 1098:1090–1098

    Article  Google Scholar 

  51. Sudharsan S, Subhapradha N, Seedevi P, Shanmugam V, Madeswaran P, Shanmugam A, Srinivasan A (2015) Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal). Int J Biol Macromol 81:1031–1038

    Article  Google Scholar 

  52. Kumirska J, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thöming J, Stepnowski P (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8(5):1567–1636

    Article  Google Scholar 

  53. Chattopadhyay K, Mateu CG, Mandal P, Pujol CA, Damonte EB, Ray B (2007) Galactan sulfate of Grateloupia indica: isolation structural features and antiviral activity. Phytochem 68:1428–1435

    Article  Google Scholar 

  54. Hu T, Liu D, Chen Y, Wu J, Wang S (2010) Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. Int J Biol Macromol 46(2):193–198

    Article  Google Scholar 

  55. Peng Z, Liu M, Fang Z, Wu J, Zhang Q (2012) Composition and cytotoxicity of a novel polysaccharide from brown alga (Laminaria japonica). Carbohyd Polym 89(4):1022–1026

    Article  Google Scholar 

  56. Chattopadhyay N, Ghosh T, Sinha S, Chattopadhyay K, Karmakar P, Ray B (2010) Polysaccharides from Turbinaria conoides: structural features and antioxidant capacity. Food Chem 118(3):823–829

    Article  Google Scholar 

  57. Zibetti RGM, Duarte ME, Noseda MD, Colodi FG, Ducatti DR, Ferreira LG, Cardoso MA, Cerezo AS (2009) Galactans from Cryptonemia species. Part II: Studies on the system of galactans of Cryptonemia seminervis (Halymeniales) and on the structure of major fractions. Carbohydr Res 344(17):2364–2374

    Article  Google Scholar 

  58. Lahaye M, Yaphe W, Viet MTP, Rochas C (1989) 13C-NMR spectroscopy investigation of methylated and charged agarose oligo-saccharides and polysaccharides. Carbohydr Res 190:249–265

    Article  Google Scholar 

  59. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohyd Polym 55(1):77–93

    Article  Google Scholar 

  60. Baskar D, Kumar TS (2009) Effect of deacetylation time on the preparation properties and swelling behavior of chitosan films. Carbohyd Polym 78(4):767–772

    Article  Google Scholar 

  61. Luo Q, Wang Y, Han Q, Ji L, Zhang H, Fei Z, Wang Y (2019) Comparison of the physicochemical rheological and morphologic properties of chitosan from four insects. Carbohyd Polym 209:266–275

    Article  Google Scholar 

  62. Kakanejadifard A, Khojasteh V, Zabardasti A, Azarbani F (2018) New azo-schiff base ligand capped silver and cadmium sulfide nanoparticles preparation characterization antibacterial and antifungal activities. Org Chem Res 4(2):210–226

    Google Scholar 

  63. Jaiswal S, Dutta PK, Kumar S, Koh J, Pandey S (2019) Methyl methacrylate modified chitosan: synthesis characterization and application in drug and gene delivery. Carbohyd Polym 211:109–117

    Article  Google Scholar 

  64. Mitta G, Vandenbulcke F, Roch P (2000) Original involvement of antimicrobial peptides in mussel innate immunity. FEBS Lett 486(3):185–190

    Article  Google Scholar 

  65. Allsop AE (1998) New antibiotic discovery novel screens novel targets and impact of microbial genomics. Curr Opin Microbiol 1(5):530–534

    Article  Google Scholar 

  66. Vairamani S (2010) Studies on biochemical composition polysaccharides and collagen from Sepiella inermis. Ph.D, Thesis Bharadhidasan University India 185pp

  67. Barwin Vino A (2003) Studies on cephalopods with reference to polysaccharides. M.Phil Thesis Annamalai University Porto Novo India pp: 70

  68. Li H, Yu X, Jin Y, Zhang W, Liu Y (2008) Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Biores Technol 99(8):3301–3305

    Article  Google Scholar 

  69. Vera J, Castro J, Gonzalez A, Moenne A (2011) Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar Drugs 9(12):2514–2525

    Article  Google Scholar 

  70. Weiss JF, Landauer MR (2003) Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicol 189:1–2

    Article  Google Scholar 

  71. Sanchez-Moreno C (2002) Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Tech Int 8:121–137

    Article  Google Scholar 

  72. Zhang QB, Yu PZ, Li ZE, Zhang H, Xu ZH, Li PC (2003) Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J Appl Phycol 15:305–310

    Article  Google Scholar 

  73. Zhao TT, Zhang QB, Qi HM, Zhang H, Niu XZ, Xu ZH (2006) Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. Int J Biol Macromol 38:45–50

    Article  Google Scholar 

  74. Kumar KS, Ganesan K, Rao PS (2008) Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty–an edible seaweed. Food Chem 107(1):289–295

    Article  Google Scholar 

  75. Wang J, Zhang J, Zhao B, Wang X, Wu Y, Yao J (2010) A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: molecular weight and antioxidant activities evaluation. Carbohydr Polym 80(1):84–93

    Article  Google Scholar 

  76. Wang J, Zhang Q, Zhang Z, Li Z (2008) Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol 42:127–132

    Article  Google Scholar 

  77. Magalhaes KD, Costa LS, Fidelis GP, Oliveira RM, Nobre LTDB, Dantas-Santos N, Camara RBG, Albuquerque IRL, Cordeiro SL, Sabry DA, Costa MSSP (2011) Anticoagulant antioxidant and antitumor activities of heterofucans from the seaweed Dictyopteris delicatula. Int J Mol Sci 12:3352–3365

    Article  Google Scholar 

  78. Sudharsan S, Giji S, Seedevi P, Vairamani S, Shanmugam A (2018) Isolation, characterization and bioactive potential of sulfated galactans from Spyridia hypnoides (Bory) Papenfuss. Int J Biol Macromol 109:589–597

    Article  Google Scholar 

  79. Li Z, Wang B, Zhang Q, Ma J, Li L (2012) Influence of preparation methods on the yield components and antioxidant activities of polysaccharides from Palmaria palmata. Afr J Pharm Pharmacol 6(15):1157–1165

    Google Scholar 

  80. Wang L, An X, Yang F, Xin Z, Zhao L, Hu Q (2008) Isolation and characterization of collagens from the skin scale and bone of deep – sea red fish (Sebastes mentella). Food Chem 108:616–623

    Article  Google Scholar 

  81. Portero A, Teijeiro-Osorio D, Alonso MJ, Remuñán-López C (2007) Development of chitosan sponges for buccal administration of insulin. Carbohyd Polym 68(4):617–625

    Article  Google Scholar 

  82. Unnikrishnan PS, Suthindhiran K, Jayasri MA (2015) Antidiabetic potential of marine algae by inhibiting key metabolic enzymes. Front Life Sci 8(2):148–159

    Article  Google Scholar 

  83. Mu H, Zhang A, Zhang L, Niu H, Duan J (2014) Inhibitory effects of chitosan in combination with antibiotics on Listeria monocytogenes biofilm. Food Control 38:215–220

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author M.M. is thankful to the Sathyabama Institute of Science and Technology, Chennai, for providing the Seed Money and lab facilities for doing research work and M.E. and P.A. are thankful to CAS in Marine Biology, Annamalai University, for the providing the lab facilities for doing research work.

Author information

Authors and Affiliations

Authors

Contributions

Meivelu Moovendhan: conceptualization, supervision, data curation, review and editing, funding acquisition, writing—original draft. M. Elangovan: methodology, investigation, resources and formal analysis. P. Anantharaman, M. Kavisri: conceptualization, supervision, review and editing.

Corresponding author

Correspondence to Meivelu Moovendhan.

Ethics declarations

Ethical approval

In this study, animal experiment was not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manickam Elangovan, Perumal Anantharaman, M. Kavisri et al. Isolation, chemical characterization and in vitro bioactive potential of polysaccharides from seaweed Portieria hornemannii. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03276-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03276-5

Keywords

Navigation