Skip to main content
Log in

Bio-inspired hierarchical porous activated carbon aerogel from waste corrugated cardboard for adsorption of oxytetracycline from water

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The production of value-added materials from waste corrugated cardboard (WCC) is an important problem. Inspired by birds' nest and octopus sucker, a monolithic hierarchical porous activated carbon aerogel was fabricated from WCC via ethanol evaporation-induced drying, carbonization and iron-catalyzed CO2 activation. Pore formation mechanism was revealed by X-ray diffraction (XRD), thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TG-FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and pore size distribution. The effectiveness of the product to remove oxytetracycline (OTC) from aqueous solution was compared with that of commercial granular activated carbon. The product possessed high specific surface area (878 m2 g1) and large total pore volume (0.787 m2 g1). The reactions of carbon, CO2 and iron species occurred between 720 and 910 °C favored the formation of pores during CO2 activation. OTC maximum monolayer adsorption capacity of the product (227 mg g1) was 32% higher than that of the commercial activated carbon, because the product contained more mesopores with diameters ranging from 2.14 to 3.78 nm. Adsorption kinetics of OTC on the floatable activated carbon aerogel followed pseudo-second-order kinetics model, and the adsorption rate was faster than that for the sinking commercial activated carbon, because pores exposed on the surface of carbon fibers in the activated carbon aerogel guaranteed rapid diffusion of OTC. This work paved a new way to convert WCC into carbon aerogel-based adsorbents for water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liang G, Wang Z, Yang X, Qin T, Xie X, Zhao J, Li S (2019) Efficient removal of oxytetracycline from aqueous solution using magnetic montmorillonite-biochar composite prepared by one step pyrolysis. Sci Total Environ 695:133800

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Eniola JO, Kumar R, Al-Rashdi AA, Barakat MA (2020) Hydrothermal synthesis of structurally variable binary CuAl, MnAl and ternary CuMnAl hydroxides for oxytetracycline antibiotic adsorption. J Environ Chem Eng 8:103535

    Article  CAS  Google Scholar 

  3. Lin Y, Xu S, Li J (2013) Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chem Eng J 225:679–685

    Article  CAS  Google Scholar 

  4. Alhokbany NS, Naushad M, Kumar V, Al hatim S, Alshehri SM, Ahamad T (2020) Self-nitrogen doped carbons aerogel derived from waste cigarette butts cellulose acetate for the adsorption of BPA Kinetics and adsorption mechanisms. J King Saud Univ Sci 32:3351–3358

    Article  Google Scholar 

  5. Bednárek J, Matějová L, Koutník I, Vráblová M, Cruz GJF, Strašák T, Šiler P, Hrbáč J (2022) Revelation of high-adsorption-performance activated carbon for removal of fluoroquinolone antibiotics from water. Biomass Convers Bior. https://doi.org/10.1007/s13399-022-02577-z

    Article  Google Scholar 

  6. Wan J, Liu L, Ayub KS, Zhang W, Shen G, Hu S, Qian X (2020) Characterization and adsorption performance of biochars derived from three key biomass constituents. Fuel 269:117142

    Article  CAS  Google Scholar 

  7. Ameh AE, Oyekola OO, Petrik LF (2022) Column adsorption of Rhodamine 6G over Na–P/SOD zeolite synthesised from aluminosilicate secondary waste. J Clean Prod 338:130571

    Article  CAS  Google Scholar 

  8. AlHazmi GAA, AbouMelha KS, El-Desouky MG, El-Bindary AA (2022) Effective adsorption of doxorubicin hydrochloride on zirconium metal-organic framework: Equilibrium, kinetic and thermodynamic studies. J Mol Struct 1258:132679

    Article  CAS  Google Scholar 

  9. Liu B, Lou S, Zeng Y, Qin Y, Zhang W, Zhang L, Liu X (2021) High-efficiency adsorption of phosphate by Fe-Zr-La tri-metal oxide composite from aqueous media: Performance and mechanism. Adv Powder Technol 32:4587–4598

    Article  CAS  Google Scholar 

  10. Yin N, Ai Y, Xu Y, Ouyang Y, Yang P (2020) Preparation of magnetic biomass-carbon aerogel and its application for adsorption of uranium(VI). J Radioanal Nucl Chem 326:1307–1321

    Article  CAS  Google Scholar 

  11. Li J, Cheng R, Chen J, Lan J, Li S, Zhou M, Zeng T, Hou H (2021) Microscopic mechanism about the selective adsorption of Cr VI from salt solution on nitrogen-doped carbon aerogel microsphere pyrolysis products. Sci Total Environ 798:149331

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Li J, Zheng L, Liu H (2017) A novel carbon aerogel prepared for adsorption of copper(II) ion in water. J Porous Mat 24:1575–1580

    Article  CAS  Google Scholar 

  13. Yu M, Han Y, Li J, Wang L (2018) Magnetic N-doped carbon aerogel from sodium carboxymethyl cellulose/collagen composite aerogel for dye adsorption and electrochemical supercapacitor. Int J Biol Macromol 115:185–193

    Article  CAS  PubMed  Google Scholar 

  14. Jiang X, Xiang X, Peng S, Hou L (2019) Facile preparation of nitrogen-doped activated mesoporous carbon aerogel from chitosan for methyl orange adsorption from aqueous solution. Cellulose 26:4515–4527

    Article  CAS  Google Scholar 

  15. Zhang J, Qin L, Yang Y, Liu X (2021) Porous carbon nanospheres aerogel based molecularly imprinted polymer for efficient phenol adsorption and removal from wastewater. Sep Purif Technol 274:119029

    Article  CAS  Google Scholar 

  16. Coteţ LC, Măicăneanu A, Forţ CI, Danciu V (2013) Alpha-Cypermethrin Pesticide Adsorption on Carbon Aerogel and Xerogel. Sep Sci Technol 48:2649–2658

    Article  Google Scholar 

  17. Wang C, Yang S, Ma Q, Jia X, Ma P-C (2017) Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds. Carbon 118:765–771

    Article  Google Scholar 

  18. Yang H, Sun J, Zhang Y, Xue Q, Xia S (2021) Preparation of hydrophobic carbon aerogel using cellulose extracted from luffa sponge for adsorption of diesel oil. Ceram Int 47:33827–33834

    Article  CAS  Google Scholar 

  19. Sun S, Yan Q, Wu M, Zhao X (2021) Carbon aerogel based materials for secondary batteries. Sustain Mater Techno 30:e00342

    CAS  Google Scholar 

  20. Zhang H, Feng J, Li L, Jiang Y, Feng J (2022) Preparation of a carbon fibre-reinforced carbon aerogel and its application as a high-temperature thermal insulator. RSC Adv 12:13783–13791

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dong ZM, Cheng L, Sun T, Zhao GC, Kan X (2021) Carboxylation modified meso-porous carbon aerogel templated by ionic liquid for solid-phase microextraction of trace tetracyclines residues using HPLC with UV detection. Microchim Acta 188:43

    Article  CAS  Google Scholar 

  22. Pandey AP, Bhatnagar A, Shukla V, Soni PK, Singh S, Verma SK, Shaneeth M, Sekkar V, Srivastava ON (2020) Hydrogen storage properties of carbon aerogel synthesized by ambient pressure drying using new catalyst triethylamine. Int J Hydrogen Energ 45:30818–30827

    Article  CAS  Google Scholar 

  23. Li Y-Q, Samad YA, Polychronopoulou K, Alhassan SM, Liao K (2014) Carbon Aerogel from Winter Melon for Highly Efficient and Recyclable Oils and Organic Solvents Absorption. ACS Sustain Chem Eng 2:1492–1497

    Article  CAS  Google Scholar 

  24. Cheng P, Li T, Yu H, Zhi L, Liu Z, Lei Z (2016) Biomass-Derived Carbon Fiber Aerogel as a Binder-Free Electrode for High-Rate Supercapacitors. J Phys Chem C 120:2079–2086

    Article  CAS  Google Scholar 

  25. Zhu L, Jiang H, Ran W, You L, Yao S, Shen X, Tu F (2019) Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries. Appl Surf Sci 489:154–164

    Article  ADS  CAS  Google Scholar 

  26. Cai T, Wang H, Jin C, Sun Q, Nie Y (2017) Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation. J Mater Sci-Mater El 29:4334–4344

    Article  Google Scholar 

  27. Li D, Wang Y, Sun Y, Lu Y, Chen S, Wang B, Zhang H, Xia Y, Yang D (2018) Turning gelidium amansii residue into nitrogen-doped carbon nanofiber aerogel for enhanced multiple energy storage. Carbon 137:31–40

    Article  CAS  Google Scholar 

  28. Sobrinho RAL, Andrade GRS, Costa LP, de Souza MJB, de Souza A, Gimenez IF (2019) Ordered micro-mesoporous carbon from palm oil cooking waste via nanocasting in HZSM-5/SBA-15 composite Preparation and adsorption studies. J Hazard Mater 362:53–61

    Article  CAS  PubMed  Google Scholar 

  29. Lu Z, Sun W, Li C, Cao W, Jing Z, Li S, Ao X, Chen C, Liu S (2020) Effect of granular activated carbon pore-size distribution on biological activated carbon filter performance. Water Res 177:115768

    Article  CAS  PubMed  Google Scholar 

  30. Liu H, Long L, Weng X, Zheng S, Xu Z (2020) Efficient removal of tetrabromobisphenol A using microporous and mesoporous carbons The role of pore structure. Micropor Mesopor Mat 298:110052

    Article  CAS  Google Scholar 

  31. Far HM, Lawson S, Al-Naddaf Q, Rezaei F, Sotiriou-Leventis C, Rownaghi AA (2021) Advanced pore characterization and adsorption of light gases over aerogel-derived activated carbon. Micropor Mesopor Mat 313:110833

    Article  CAS  Google Scholar 

  32. Kwon SH, Kim BS, Kim SG, Lee BJ, Kim MS, Jung JC (2016) Preparation of Nano-Porous Activated Carbon Aerogel Using a Single-Step Activation Method for Use as High-Power EDLC Electrode in Organic Electrolyte. J Nanosci Nanotechno 16:4598–4604

    Article  CAS  Google Scholar 

  33. Yang I, Kwon D, Kim M-S, Jung JC (2018) A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors. Carbon 132:503–511

    Article  CAS  Google Scholar 

  34. Sun J, Huang J, E L, Ma C, Wu Z, Xu Z, Luo S, Li W, Liu S, (2020) Wood-Inspired Compressible, Mesoporous, and Multifunctional Carbon Aerogel by a Dual-Activation Strategy from Cellulose. ACS Sustain Chem Eng 8:11114–11122

    Article  CAS  Google Scholar 

  35. Zhao H, Wang Y, Wang Y, Cao T, Zhao G (2012) Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode High activity wide pH range and catalytic mechanism. Appl Catal B Environ 125:120–127

    Article  CAS  Google Scholar 

  36. Xi S, Wang L, Xie H, Yu W (2022) Solar-thermal energy conversion and storage of super black carbon reinforced melamine foam aerogel for shape-stable phase change composites. Int J Hydrogen Energ 47:12024–12035

    Article  CAS  Google Scholar 

  37. Liu X, Yuan L, Zhong M, Ni S, Yang F, Fu Z, Xu X, Wang C, Tang Y (2020) Enhanced capacitive performance by improving the graphitized structure in carbon aerogel microspheres. RSC Adv 10:22242–22249

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. E L, Li W, Ma C, Xu Z, Liu S, (2018) CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors. Appl Surf Sci 457:477–486

    Article  ADS  Google Scholar 

  39. Bhosale Y, Weiner N, Butler A, Kim SH, Gazzola M, King H (2022) Micromechanical Origin of Plasticity and Hysteresis in Nestlike Packings. Phys Rev Lett 128:198003

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Wang Z, Zhu X, Cheng X, Bai L, Luo X, Xu D, Ding J, Wang J, Li G, Shao P, Liang H (2021) Nanofiltration Membranes with Octopus Arm-Sucker Surface Morphology Filtration Performance and Mechanism Investigation. Environ Sci Technol 55:16676–16686

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Sotoudehnia F, Baba Rabiu A, Alayat A, McDonald AG (2020) Characterization of bio-oil and biochar from pyrolysis of waste corrugated cardboard. J Anal Appl Pyrol 145:104722

    Article  CAS  Google Scholar 

  42. Xu H, Huang L, Xu M, Qi M, Yi T, Mo Q, Zhao H, Huang C, Wang S, Liu Y (2020) Preparation and Properties of Cellulose-Based Films Regenerated from Waste Corrugated Cardboards Using [Amim]Cl/CaCl2. ACS Omega 5:23743–23754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuan S-J, Zhang J-J, Fan H-X, Dai X-H (2018) Facile and sustainable shear mixing/carbonization approach for upcycling of carton into superhydrophobic coating for efficient oil-water separation. J Clean Prod 196:644–652

    Article  CAS  Google Scholar 

  44. Jiang Q, Xing X, Jing Y, Han Y (2020) Preparation of cellulose nanocrystals based on waste paper via different systems. Int J Biol Macromol 149:1318–1322

    Article  CAS  PubMed  Google Scholar 

  45. Chen YW, Lee HV (2018) Revalorization of selected municipal solid wastes as new precursors of green nanocellulose via a novel one-pot isolation system A source perspective. Int J Biol Macromol 107:78–92

    Article  CAS  PubMed  Google Scholar 

  46. Zhang H, Xing L, Liang H, Ren J, Ding W, Wang Q, Geng Z, Xu C (2022) Efficient removal of Remazol Brilliant Blue R from water by a cellulose-based activated carbon. Int J Biol Macromol 207:254–262

    Article  CAS  PubMed  Google Scholar 

  47. Seifi A, Bahramian AR, Sharif A (2016) Correlation between structure and oxidation behavior of carbon aerogels. J Energy Storage 7:195–203

    Article  Google Scholar 

  48. Liu Y, Yan C, Zhang Z, Gong Y, Wang H, Qiu X (2016) A facile method for preparation of floatable and permeable fly ash-based geopolymer block. Mater Lett 185:370–373

    Article  CAS  Google Scholar 

  49. Qiao Y, Pedersen CM, Huang D, Ge W, Wu M, Chen C, Jia S, Wang Y, Hou X (2016) NMR Study of the Hydrolysis and Dehydration of Inulin in Water Comparison of the Catalytic Effect of Lewis Acid SnCl4 and Brønsted Acid HCl. ACS Sustain Chem Eng 4:3327–3333

    Article  CAS  Google Scholar 

  50. Nishimura M, Iwasaki S, Horio M (2009) The role of potassium carbonate on cellulose pyrolysis. J Taiwan Inst Chem E 40:630–637

    Article  CAS  Google Scholar 

  51. Liu D, Yu Y, Long Y, Wu H (2015) Effect of MgCl2 loading on the evolution of reaction intermediates during cellulose fast pyrolysis at 325 °C. P Combust Inst 35:2381–2388

    Article  CAS  Google Scholar 

  52. Mukome FN, Zhang X, Silva LC, Six J, Parikh SJ (2013) Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J Agr Food chem 61:2196–2204

    Article  CAS  Google Scholar 

  53. Fan Q, Sun J, Chu L, Cui L, Quan G, Yan J, Hussain Q, Iqbal M (2018) Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere 207:33–40

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Demiral İ, Samdan C, Demiral H (2021) Enrichment of the surface functional groups of activated carbon by modification method. Surf Interfaces 22:100873

    Article  CAS  Google Scholar 

  55. Khattab IS, Bandarkar F, Fakhree MAA, Jouyban A (2012) Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K. Korean J Chem Eng 29:812–817

    Article  CAS  Google Scholar 

  56. Qi C, Luo C, Tao Y, Lv W, Zhang C, Deng Y, Li H, Han J, Ling G, Yang Q-H (2019) Capillary shrinkage of graphene oxide hydrogels. Sci China Mater 63:1870–1877

    Article  Google Scholar 

  57. Piai L, Dykstra JE, Adishakti MG, Blokland M, Langenhoff AAM, van der Wal A (2019) Diffusion of hydrophilic organic micropollutants in granular activated carbon with different pore sizes. Water Res 162:518–527

    Article  CAS  PubMed  Google Scholar 

  58. Zhu X, Qian F, Liu Y, Matera D, Wu G, Zhang S, Chen J (2016) Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence. Carbon 99:338–347

    Article  CAS  Google Scholar 

  59. Xu Z, Zhou Y, Sun Z, Zhang D, Huang Y, Gu S, Chen W (2020) Understanding reactions and pore-forming mechanisms between waste cotton woven and FeCl3 during the synthesis of magnetic activated carbon. Chemosphere 241:125120

    Article  CAS  PubMed  Google Scholar 

  60. Zhang S, Su Y, Zhu S, Zhang H, Zhang Q (2018) Effects of pretreatment and FeCl3 preload of rice husk on synthesis of magnetic carbon composites by pyrolysis for supercapacitor application. J Anal Appl Pyrol 135:22–31

    Article  CAS  Google Scholar 

  61. Mei Y, Wang Z, Zhang S, Fang Y (2021) Novel Assumption about the Mechanism of Catalytic Gasification: On the Basis of the Same Catalytic Effect of Alkali between C-CO2 and Fe–CO2 Reactions. Energ Fuel 35:16258–16263

    Article  CAS  Google Scholar 

  62. Zhang X, Song X, Wang J, Su W, Bai Y, Zhou B, Yu G (2021) CO2 gasification of Yangchangwan coal catalyzed by iron-based waste catalyst from indirect coal-liquefaction plant. Fuel 285:119228

    Article  CAS  Google Scholar 

  63. Zhang F, Xu D, Wang Y, Argyle MD, Fan M (2015) CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst. Appl Energ 145:295–305

    Article  ADS  CAS  Google Scholar 

  64. Saucedo MA, Lim JY, Dennis JS, Scott SA (2014) CO2-gasification of a lignite coal in the presence of an iron-based oxygen carrier for chemical-looping combustion. Fuel 127:186–201

    Article  CAS  Google Scholar 

  65. Secchi S, Asdrubali F, Cellai G, Nannipieri E, Rotili A, Vannucchi I (2016) Experimental and environmental analysis of new sound-absorbing and insulating elements in recycled cardboard. J Build Eng 5:1–12

    Article  Google Scholar 

  66. Djilani C, Zaghdoudi R, Djazi F, Bouchekima B, Lallam A, Modarressi A, Rogalski M (2015) Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J Taiwan Inst Chem E 53:112–121

    Article  CAS  Google Scholar 

  67. Mohammadi A, Moghaddas J (2015) Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites. Chem Eng Res Des 94:475–484

    Article  CAS  Google Scholar 

  68. Xie Q, Zhang X, Liang D, Cao J, Liu J (2020) Directional preparation of coal-based activated carbon principles approaches and applications In Chinese. Coal Sci Technol 48:1–28

    CAS  Google Scholar 

  69. Lach J, Ociepa-Kubicka A, Mrowiec M (2021) Oxytetracycline Adsorption from Aqueous Solutions on Commercial and High-Temperature Modified Activated Carbons. Energies 14:3481

    Article  CAS  Google Scholar 

  70. Alves LS, Ferreira Neto VJM, Costa TSB, Gaspar AB, Mendes FMT, Luna AS, Henriques CA (2020) Use of activated carbon obtained from sugarcane straw for PAH adsorption - a comparative study with commercial materials. Environ Technol 43:861–875

    Article  PubMed  Google Scholar 

  71. Daoud M, Benturki O, Girods P, Donnot A, Fontana S (2019) Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus jujube stones for the removal of commercial dye and the treatment of dyestuff wastewater. Microchem J 148:493–502

    Article  CAS  Google Scholar 

  72. Mihciokur H, Oguz M (2016) Removal of oxytetracycline and determining its biosorption properties on aerobic granular sludge. Environ Toxicol Phar 46:174–182

    Article  CAS  Google Scholar 

  73. Pham TD, Tran TT, Le VA, Pham TT, Dao TH, Le TS (2019) Adsorption characteristics of molecular oxytetracycline onto alumina particles The role of surface modification with an anionic surfactant. J Mol Liq 287:110900

    Article  CAS  Google Scholar 

  74. Boulinguiez B, Le Cloirec P (2010) Adsorption on Activated Carbons of Five Selected Volatile Organic Compounds Present in Biogas Comparison of Granular and Fiber Cloth Materials. Energ Fuel 24:4756–4765

    Article  CAS  Google Scholar 

  75. Liu T, Serrano J, Elliott J, Yang X, Cathcart W, Wang Z, He Z, Liu G (2020) Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers. Sci Adv 6:eaaz0906

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Balanay JA, Crawford SA, Lungu CT (2011) Comparison of toluene adsorption among granular activated carbon and different types of activated carbon fibers ACFs. J Occup Environ Hyg 8:573–579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51909292), and Fundamental Research Funds for Central Public Welfare Scientific Research Institution (K-JBYWF-2021-ZT04, K-JBYWF-2019-ZT02). The authors wish to thank the anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Contributions

Yan Gao: Investigation, Conceptualization, Formal analysis, Writing—original draft.

Yizhong Zhang: Investigation, Writing—original draft.

Yuhui Ma: Funding acquisition, Supervision, Conceptualization, Writing—review & editing.

Corresponding author

Correspondence to Yuhui Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhang, Y. & Ma, Y. Bio-inspired hierarchical porous activated carbon aerogel from waste corrugated cardboard for adsorption of oxytetracycline from water. Biomass Conv. Bioref. 14, 8877–8894 (2024). https://doi.org/10.1007/s13399-022-02936-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02936-w

Keywords

Navigation