Skip to main content
Log in

Pyrolytic utilization of a typical halophyte: Suaeda glauca—the excellent adsorbent raw material for bisphenol S removal

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Suaeda glauca (SG), widely applied to restore salinized land, was used to prepare biochar (activated) for the adsorption of bisphenol S (BPS) from water. SG had a high cellulose content and uniform salt ion distribution. The migration pathway of salt ions in halophytes was analyzed via energy dispersive spectrometer (EDS), inductively coupled plasma atomic emission spectrometry (ICP-AES), and X-ray diffraction (XRD). Phosphoric acid impregnation could lead to the leaching of 80.52% of salt ions from SG. The products had high specific surface area (1339 m2/g) and adsorption capacity for BPS (437 mg/g). Response surface methodology indicated that pH and temperature could significantly influence the adsorption capacity. Molecular dynamics and quantum chemistry were used to describe the adsorption process and mechanism. By comparing the pore size distribution and adsorption capacity of different carbons with the simulation results of molecular dynamics, it can be discovered that the effect of micropore size on pollutant adsorption is verifiable through graphite layer modeling. Meanwhile, the presence of salt ions had no significant effect on BPS adsorption capacity. The absorption mechanism might be ascribed to a large specific surface area and π–π bond interactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Supplementary data to this article can be found online.

References

  1. Zdarta J, Antecka K, Frankowski R et al (2018) The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds. Sci Total Environ 615:784–795. https://doi.org/10.1016/j.scitotenv.2017.09.213

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Fang Z, Gao Y, Wu X et al (2020) A critical review on remediation of bisphenol S (BPS) contaminated water: efficacy and mechanisms. Crit Rev Environ Sci Technol 50:476–522. https://doi.org/10.1080/10643389.2019.1629802

    Article  CAS  Google Scholar 

  3. Sun P, Liu X, Zhang M et al (2021) Sorption and leaching behaviors between aged MPs and BPA in water: the role of BPA binding modes within plastic matrix. Water Res 195:116956. https://doi.org/10.1016/j.watres.2021.116956

    Article  CAS  PubMed  Google Scholar 

  4. Zhao C, Xie P, Yong T et al (2018) MALDI-MS imaging reveals asymmetric spatial distribution of lipid metabolites from bisphenol S-induced nephrotoxicity. Anal Chem 90:3196–3204. https://doi.org/10.1021/acs.analchem.7b04540

    Article  CAS  PubMed  Google Scholar 

  5. Ahsan N, Ullah H, Ullah W, Jahan S (2018) Comparative effects of bisphenol S and bisphenol A on the development of female reproductive system in rats; a neonatal exposure study. Chemosphere 197:336–343. https://doi.org/10.1016/j.chemosphere.2017.12.118

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Ullah H, Ambreen A, Ahsan N, Jahan S (2017) Bisphenol S induces oxidative stress and DNA damage in rat spermatozoa in vitro and disrupts daily sperm production in vivo. Toxicol Environ Chem 99:953–965. https://doi.org/10.1080/02772248.2016.1269333

    Article  CAS  Google Scholar 

  7. Liao C, Kannan K (2014) A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess 31:319–329. https://doi.org/10.1080/19440049.2013.868611

    Article  CAS  PubMed  Google Scholar 

  8. Liao C, Liu F, Alomirah H et al (2012) Bisphenol S in urine from the United States and seven Asian countries: occurrence and human exposures. Environ Sci Technol 46:6860–6866. https://doi.org/10.1021/es301334j

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Jin H, Zhu L (2016) Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. Water Res 103:343–351. https://doi.org/10.1016/j.watres.2016.07.059

    Article  CAS  PubMed  Google Scholar 

  10. Yamazaki E, Yamashita N, Taniyasu S et al (2015) Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol Environ Saf 122:565–572. https://doi.org/10.1016/j.ecoenv.2015.09.029

    Article  CAS  PubMed  Google Scholar 

  11. Nejumal KK, Dineep D, Mohan M et al (2018) Presence of bisphenol S and surfactants in the sediments of Kongsfjorden: a negative impact of human activities in Arctic? Environ Monit Assess. https://doi.org/10.1007/s10661-017-6383-7

    Article  Google Scholar 

  12. Shao P, Ren Z, Tian J et al (2017) Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin Α-Fe2O3 nanosheets with highly exposed (1 1 0) facets: a superior photocatalyst for degradation of bisphenol S. Chem Eng J 323:64–73. https://doi.org/10.1016/j.cej.2017.04.069

    Article  CAS  Google Scholar 

  13. Yang T, Wang L, Liu Y et al (2019) Comparative study on ferrate oxidation of BPS and BPAF: kinetics, reaction mechanism, and the improvement on their biodegradability. Water Res 148:115–125. https://doi.org/10.1016/j.watres.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  14. Choi YJ, Lee LS (2017) Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA. Environ Sci Technol 51:13698–13704. https://doi.org/10.1021/acs.est.7b03889

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Ren Y, Wang S, Zhang J et al (2021) Enhancing the performance of Fenton-like oxidation by a dual-layer membrane: a sequential interception-oxidation process. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123766

    Article  PubMed  Google Scholar 

  16. Reddy PVL, Kim KH, Kavitha B et al (2018) Photocatalytic degradation of bisphenol A in aqueous media: a review. J Environ Manage 213:189–205. https://doi.org/10.1016/j.jenvman.2018.02.059

    Article  CAS  PubMed  Google Scholar 

  17. Kim S, Chu KH, Al-Hamadani YAJ et al (2018) Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chem Eng J 335:896–914. https://doi.org/10.1016/j.cej.2017.11.044

    Article  CAS  Google Scholar 

  18. Wang B, Gao B, Fang J (2017) Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol 47:2158–2207. https://doi.org/10.1080/10643389.2017.1418580

    Article  CAS  Google Scholar 

  19. Feng Q, Wang B, Chen M et al (2021) Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: a review. Resour Conserv Recycl 164:105204. https://doi.org/10.1016/j.resconrec.2020.105204

    Article  CAS  Google Scholar 

  20. Cheng N, Wang B, Wu P et al (2021) Adsorption of emerging contaminants from water and wastewater by modified biochar: a review. Environ Pollut 273:116448. https://doi.org/10.1016/j.envpol.2021.116448

    Article  CAS  PubMed  Google Scholar 

  21. Wang T, Xue L, Zheng L et al (2021) Biomass-derived N/S dual-doped hierarchically porous carbon material as effective adsorbent for the removal of bisphenol F and bisphenol S. J Hazard Mater 416:126126. https://doi.org/10.1016/j.jhazmat.2021.126126

    Article  CAS  PubMed  Google Scholar 

  22. Ahmadpour A, Do DD (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon N Y 34:471–479. https://doi.org/10.1016/0008-6223(95)00204-9

    Article  CAS  Google Scholar 

  23. Chenfei SHI, Yumeng LI, Haiyao F et al (2018) Removal of p -nitrophenol using persulfate activated by biochars prepared from different biomass materials. Chem Res Chin Univ 34:39–43. https://doi.org/10.1007/s40242-017-7245-0

    Article  CAS  Google Scholar 

  24. Prahas D, Kartika Y, Indraswati N, Ismadji S (2008) Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization. Chem Eng J 140:32–42. https://doi.org/10.1016/j.cej.2007.08.032

    Article  CAS  Google Scholar 

  25. Cheng N, Wang B, Feng Q et al (2021) Co-adsorption performance and mechanism of nitrogen and phosphorus onto eupatorium adenophorum biochar in water. Bioresour Technol 340:125696. https://doi.org/10.1016/j.biortech.2021.125696

    Article  CAS  PubMed  Google Scholar 

  26. Kefu Z, Hai F, Ungar IA (2002) Survey of halophyte species in China. Plant Sci 163:491–498. https://doi.org/10.1016/S0168-9452(02)00160-7

    Article  CAS  Google Scholar 

  27. Yang C, Shi D, Wang D (2008) Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul 56:179–190. https://doi.org/10.1007/s10725-008-9299-y

    Article  CAS  Google Scholar 

  28. Flowers TJ (1972) Salt Tolerance in Suaeda maritima (L.) Dum: the effect of sodium chloride on growth, respiration, and soluble enzymes in a comparative study with pisum sativum SATIVUM L. J Exp Bot 23:310–321. https://doi.org/10.1093/jxb/23.2.310

    Article  CAS  Google Scholar 

  29. Sun HX, Zhou DW, Zhao CS et al (2012) Evaluation of yield and chemical composition of a halophyte (Suaeda glauca) and its feeding value for lambs. Grass Forage Sci 67:153–161. https://doi.org/10.1111/j.1365-2494.2011.00831.x

    Article  CAS  Google Scholar 

  30. Siatecka A, Różyło K, Ok YS, Oleszczuk P (2021) Biochars ages differently depending on the feedstock used for their production: willow- versus sewage sludge-derived biochars. Sci Total Environ 789:147458. https://doi.org/10.1016/j.scitotenv.2021.147458

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Chen Y, Liu J, Zeng Q et al (2021) Preparation of Eucommia ulmoides lignin-based high-performance biochar containing sulfonic group: synergistic pyrolysis mechanism and tetracycline hydrochloride adsorption. Bioresour Technol 329:124856. https://doi.org/10.1016/j.biortech.2021.124856

    Article  CAS  PubMed  Google Scholar 

  32. McLintock IS (1967) The elovich equation in chemisorption kinetics. Nature 216:1204–1205. https://doi.org/10.1038/2161204a0

    Article  CAS  ADS  Google Scholar 

  33. Rahmani-Sani A, Singh P, Raizada P et al (2020) Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions. Bioresour Technol 297:122452. https://doi.org/10.1016/j.biortech.2019.122452

    Article  CAS  PubMed  Google Scholar 

  34. Gorgievski M, Božić D, Stanković V et al (2013) Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw. Ecol Eng 58:113–122. https://doi.org/10.1016/j.ecoleng.2013.06.025

    Article  Google Scholar 

  35. Awan S, Ippolito JA, Ullman JL et al (2021) Biochars reduce irrigation water sodium adsorption ratio. Biochar 3:77–87. https://doi.org/10.1007/s42773-020-00073-z

    Article  CAS  ADS  Google Scholar 

  36. Liu H, Zhang J, Bao N et al (2012) Textural properties and surface chemistry of lotus stalk-derived activated carbons prepared using different phosphorus oxyacids: adsorption of trimethoprim. J Hazard Mater 235–236:367–375. https://doi.org/10.1016/j.jhazmat.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  37. Yang H, Chen P, Chen W et al (2022) Insight into the formation mechanism of N, P co-doped mesoporous biochar from H3PO4 activation and NH3 modification of biomass. Fuel Process Technol 230:107215. https://doi.org/10.1016/j.fuproc.2022.107215

    Article  CAS  Google Scholar 

  38. Wang S, Gao B, Zimmerman AR et al (2015) Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere 134:257–262. https://doi.org/10.1016/j.chemosphere.2015.04.062

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Pei Z, Li L, Sun L et al (2013) Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6- trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon N Y 51:156–163. https://doi.org/10.1016/j.carbon.2012.08.024

    Article  CAS  Google Scholar 

  40. Kayiranga A, Luo Z, Ndayishimiye JC et al (2021) Insights into thallium adsorption onto the soil, bamboo-derived biochar, and biochar amended soil in pomelo orchard. Biochar 3:315–328. https://doi.org/10.1007/s42773-021-00095-1

    Article  CAS  ADS  Google Scholar 

  41. Suárez-García F, Martínez-Alonso A, Tascón JMD (2004) Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon N Y 42:1419–1426. https://doi.org/10.1016/j.carbon.2003.11.011

    Article  CAS  Google Scholar 

  42. Montané D, Torné-Fernández V, Fierro V (2005) Activated carbons from lignin: kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid. Chem Eng J 106:1–12. https://doi.org/10.1016/j.cej.2004.11.001

    Article  CAS  Google Scholar 

  43. Suhas CPJM, Ribeiro Carrott MML (2007) Lignin - from natural adsorbent to activated carbon: a review. Bioresour Technol 98:2301–2312. https://doi.org/10.1016/j.biortech.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  44. Babeł K, Jurewicz K (2008) KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon N Y 46:1948–1956. https://doi.org/10.1016/j.carbon.2008.08.005

    Article  CAS  Google Scholar 

  45. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  46. Prasannamedha G, Kumar PS, Mehala R et al (2021) Enhanced adsorptive removal of sulfamethoxazole from water using biochar derived from hydrothermal carbonization of sugarcane bagasse. J Hazard Mater 407:124825. https://doi.org/10.1016/j.jhazmat.2020.124825

    Article  CAS  PubMed  Google Scholar 

  47. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133:304–308. https://doi.org/10.1016/j.jhazmat.2005.10.016

    Article  CAS  PubMed  Google Scholar 

  48. Saadi R, Saadi Z, Fazaeli R, Fard NE (2015) Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J Chem Eng 32:787–799. https://doi.org/10.1007/s11814-015-0053-7

    Article  CAS  Google Scholar 

  49. Cheng Q, Huang Q, Khan S et al (2016) Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions. Ecol Eng 87:240–245. https://doi.org/10.1016/j.ecoleng.2015.11.045

    Article  Google Scholar 

  50. Xiong Z, Huanhuan Z, Jing W et al (2021) Physicochemical and adsorption properties of biochar from biomass-based pyrolytic polygeneration: effects of biomass species and temperature. Biochar 3:657–670. https://doi.org/10.1007/s42773-021-00102-5

    Article  CAS  ADS  Google Scholar 

  51. Wu LH, Zhang XM, Wang F et al (2018) Occurrence of bisphenol S in the environment and implications for human exposure: a short review. Sci Total Environ 615:87–98. https://doi.org/10.1016/j.scitotenv.2017.09.194

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Li L, Xu D, Pei Z (2016) Kinetics and thermodynamics studies for bisphenol S adsorption on reduced graphene oxide. RSC Adv 6:60145–60151. https://doi.org/10.1039/c6ra10607b

    Article  CAS  ADS  Google Scholar 

  53. Huang Q, Song S, Chen Z et al (2019) Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar 1:45–73. https://doi.org/10.1007/s42773-019-00006-5

    Article  ADS  Google Scholar 

  54. Wang Z, Lv Q, Chen S et al (2018) Molecular dynamics simulations on heterogeneity and percolation of epoxy nanofilm during glass transition process. Mater Chem Phys 213:239–248. https://doi.org/10.1016/j.matchemphys.2018.04.040

    Article  CAS  ADS  Google Scholar 

  55. Jin Z, Wang X, Sun Y et al (2015) Adsorption of 4- n -nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ Sci Technol 49:9168–9175. https://doi.org/10.1021/acs.est.5b02022

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We want to acknowledge anonymous reviewers for their valuable comments.

Funding

This work was supported by the Science and Technology Major Projects of Shandong Province (2020CXGC011406), Natural Science Foundation of Shandong Province, China (ZR2019QEE034), National Natural Science Foundation of China (51908343), Youth Innovation Technology Project of Higher School in Shandong Province (2019KJD003) and the Introduction and Cultivation Plan for Young Innovative Talents of Colleges and Universities by the Education Department of Shandong Province.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FS and JX. Methodology: FS, JX, YJ, CZ, and XZ. Formal analysis and investigation: FS. Writing — original draft preparation: FS. Writing — review and editing: FS and JX. Funding acquisition: JX, CZ, and RM. Supervision: JX, CZ, CL, YF, JZ, and RM.

Corresponding author

Correspondence to Jingtao Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1910 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, F., Xu, J., Jing, Y. et al. Pyrolytic utilization of a typical halophyte: Suaeda glauca—the excellent adsorbent raw material for bisphenol S removal. Biomass Conv. Bioref. 14, 8041–8055 (2024). https://doi.org/10.1007/s13399-022-02859-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02859-6

Keywords

Navigation