Skip to main content
Log in

High performance adsorptive removal of N-nitrosodiphenylamine from aqueous solutions by jute stick–derived activated carbon: characteristics, isotherm, kinetic and thermodynamic, and reusability studies

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

N-Nitrosodiphenylamine (NDPhA) is one of the most toxic water-soluble nitrosamines. Human exposure to NDPhA can induce several health effects upon exposure to, even a low dose for a long period. The removal of NDPhA from aqueous samples using an available and inexpensive adsorbent is a challenge. In this work, homemade activated carbon from a jute stick biomass was applied for almost 100% removal of NDPhA from aqueous samples. The effect of solution pH, contact time, adsorbent dosage, and adsorbate concentration have been studied and optimized. The maximum adsorption capacity was of 219.4 mg/g. The adsorption isotherm experimental results fit the Langmuir model, and the adsorption mechanisms’ process follows the pseudo-second order kinetics. Furthermore, the thermodynamic parameters were calculated, and it has been found that the adsorption of NDPhA on the prepared adsorbent is thermodynamically favorable, spontaneous, endothermic, and dominated by physisorption interaction. The prepared adsorbent shows excellent affinity to the NDPhA molecules. The prepared adsorbent has a superior capability to remove around 97% of NDPhA molecules in a short period of time (45 min) from synthetic wastewater contaminated by NDPhA. Moreover, the prepared adsorbent was easily regenerated and reused for at least four times in wastewater to remove the highly toxic and carcinogenic NDPhA compound.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nawrocki J, Andrzejewski P (2011) Review nitrosamines and water. J Hazard Mater 189:1–18. https://doi.org/10.1016/j.jhazmat.2011.02.005

    Article  Google Scholar 

  2. Claudia GGC, Marta PB, Natalia C, Manuel HC, Pilar V (2021) Development of a new methodology for the determination of N-nitrosamines impurities in ranitidine pharmaceuticals using microextraction and gas chromatography-mass spectrometry. Talanta 223:121659. https://doi.org/10.1016/j.talanta.2020.121659

    Article  Google Scholar 

  3. Amayreh M, Chanbasha B, Alhooshani K, Nuhu DM, Lee HK (2015) Determination of N-nitrosamines by automated dispersive liquid-liquid microextraction integrated with gas chromatography and mass spectrometry. J Sep Sci 38:1741–1748. https://doi.org/10.1002/jssc.201401043

    Article  Google Scholar 

  4. United States Environmental Protection Agency (2005) Fed.Reg. 70: 49094–49138.

  5. United States Environmental Protection Agency. Integrated Risk Information System, Accessed April 9, 2014.

  6. Lucas VLM, Marina B, Eder TGC, Buoro RM (2020) Electrochemical behavior of N-Nitrosodiphenylamine and its determination in synthetic urine samples using a graphite-polyurethane composite electrode. J Electroanal Chem 857:113747. https://doi.org/10.1016/j.jelechem.2019.113747

    Article  Google Scholar 

  7. Dominique K, Gerhard S, Francis C, Graham E, Jim S, Mike M (2009) Determinationof tobacco-specific N-nitrosamines in urine of smokers and non-smokers. Biomarkers 14:547–553. https://doi.org/10.3109/13547500903242883

    Article  Google Scholar 

  8. Kuyooro SE, Adebawo FG, Okekearu PC, Maduagwu EN (2014) Urinary elimination andmetabolism of nitrosamines indifferent dietary protein wistar rat models. IOSR-JPBS 9(1):17–21. https://doi.org/10.9790/3008-09151721

    Article  Google Scholar 

  9. Mohd MS, Mun HC, Salasiah E, Wan AWI, Imran A (2015) Nano iron porphyrinated poly(amidoamine) dendrimer mobil composition matter-41 for extraction of N-nitrosodiphenylamine nitrosamine from water samples. Microporous Mesoporous Mater 213:68–77. https://doi.org/10.1016/j.micromeso.2015.04.011

    Article  Google Scholar 

  10. Li XH, Zhang RZ, Zhang XZ (2011) Theoretical investigation of some Nnitrosodiphenylamine biological molecules-A natural bond orbital (NBO) study. Can J Chem 89:1230–1235. https://doi.org/10.1139/v11-084

    Article  Google Scholar 

  11. Filho PJS, Rios A, Valcarcel M, Caramao EB (2003) Development of a new method for the determinationof nitrosamines by micellar electrokineticcapillary chromatographyPedro. Water Res 37:3837–3842. https://doi.org/10.1016/S0043-1354(03)00347-6

    Article  Google Scholar 

  12. Ikeda K, Migliorese KG, Curtis H (1990) Analysis of nitrosamines in cosmetics. J Soc Cosmet Chem 41:283–333

    Google Scholar 

  13. Lim HH, Oh YS, Shin HS (2020) Determination of N-nitrosodimethylamine andN-nitrosomethylethylamine in drug substances and products ofsartans, metformin and ranitidine by precipitation and solid phaseextraction and gas chromatography-tandem mass spectrometry. J Pharm Biomed Anal 189:113460. https://doi.org/10.1016/j.jpba.2020.113460

    Article  Google Scholar 

  14. Zhigang L, Zongyao Q, Shaoyang H, Tingting G, Qiming X (2018) Molecularly imprinted solid phase extraction coupled with gas chromatography-mass spectrometry for determination of N-Nitrosodiphenylamine in water samples. Chemosphere 212:872–880. https://doi.org/10.1016/j.chemosphere.2018.08.159

    Article  Google Scholar 

  15. Darol ED, Linda JP, Mark AS, Kathleen AF, Russell ST (2013) Subchronic urinary bladder toxicity evaluation of N-nitrosodiphenylamine in Fischer 344 rats. J Appl Toxicol 33(5):383–389. https://doi.org/10.1002/jat.2798

    Article  Google Scholar 

  16. Xiuying P, Jinfeng Z, Zhiguang L, Yujing G (2019) Electrochemical sensor for facile detection of trace N-nitrosodiphenylamine based on poly(diallyldimethylammonium chloride)-stabilized graphene/platinum nanoparticles. New J Chem 43:820–826. https://doi.org/10.1039/c8nj04892d

    Article  Google Scholar 

  17. Yang HL, Chu GH, Zhang Q, Zhou GJ, Li JH, Xia XH (2008) Electrochemical determination of NDPhA via its electrocatalysis at porous Au electrode in room temperature ionic liquid. Electroanalysis 20(18):2003–2008. https://doi.org/10.1002/elan.200804254

    Article  Google Scholar 

  18. Appel KE, Ruhl CS, Spiegelhalder B, Hildebrandt AG (1984) Denitrosation of diphenylnitrosamine in vivo. Toxicol Lett 23(3):353–358. https://doi.org/10.1016/0378-4274(84)90033-x

    Article  Google Scholar 

  19. Tatsumi K, Yamada H, Kitamura S (1983) Reductive metabolism of Nnitrosodiphenylamineto the corresponding hydrazine derivative. Arch Biochem Biophys 226(1):174–181. https://doi.org/10.1016/0003-9861(83)90282-5

    Article  Google Scholar 

  20. Lee C, Yoon J, Gunten UV (2007) Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/ hydrogen peroxide. Water Res 41:581–590. https://doi.org/10.1016/j.watres.2006.10.033

    Article  Google Scholar 

  21. Matthew GD, Kaimin S, Federico AP, James OL, Martin R (2008) Palladium-indium catalyzed reduction of N-nitrosodimethylamine: indium as a promoter metal. Environ Sci Technol 42(8):3040–3046. https://doi.org/10.1021/es7023115

    Article  Google Scholar 

  22. Quanlin Z, Sally M, Julio G, Monica G, Theodore AJ, William EM (2009) Field evidence of biodegradation of N-nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge. Water Res 43(3):793–805. https://doi.org/10.1016/j.watres.2008.11.011

    Article  Google Scholar 

  23. Yin W, Yishu G, Naipeng L, Lan Y, Baobao D, Xiaodong Z (2022) Enhanced removal of Cr(VI) from aqueous solution by stabilized nanoscale zero valent iron and copper bimetal intercalated montmorillonite. J Colloid Interface Sci 606(2):941–952. https://doi.org/10.1016/j.jcis.2021.08.075

    Article  Google Scholar 

  24. Yiqiong Y, Xingyu L, Yixin G, Huidong L, Borui J, Qianwen Z, Xiaodong Z (2022) Adsorption property of fluoride in water by metal organic framework: optimization of the process by response surface methodology technique. Surf Interfaces 28:101649. https://doi.org/10.1016/j.surfin.2021.101649

    Article  Google Scholar 

  25. Yin W, Yishu G, Naipeng L, Hu J, Xue W, Ning L, Xiaodong Z (2022) Cellulose hydrogel coated nanometer zero-valent iron intercalated montmorillonite (CH-MMT-nFe0) for enhanced reductive removal of Cr(VI): Characterization, performance, and mechanisms. J Mol Liq 347:118355. https://doi.org/10.1016/j.molliq.2021.118355

    Article  Google Scholar 

  26. Yin W, Ruotong W, Naipeng L, Yun W, Xiaodong Z (2021) Highly efficient microwave-assisted Fenton degradation bisphenol A using iron oxide modified double perovskite intercalated montmorillonite composite nanomaterial as catalyst. J Colloid Interface Sci 594:446–459. https://doi.org/10.1016/j.jcis.2021.03.046

    Article  Google Scholar 

  27. Yiqiong Y, Wenqing J, Xingyu L, Zenghui Z, Fukun B, Minhui Y, Jingcheng X, Xiaodong Z (2021) Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO n-n heterojunction microspheres. Chem Eng J 420:129934. https://doi.org/10.1016/j.cej.2021.129934

    Article  Google Scholar 

  28. Quanxin D, Renzhi R, Fukun B, Yang Y, Wanming Z, Yiqiong Y, Ning L, Xiaodong Z (2022) Preparation of modified zirconium-based metal-organic frameworks (Zr-MOFs) supported metals and recent application in environment: a review and perspectives. Surf Interfaces 28:101647. https://doi.org/10.1016/j.surfin.2021.101647

    Article  Google Scholar 

  29. Naipeng L, Yishu G, Ruotong W, Yin W, Xiaodong Z (2022) Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: design, applications and mechanisms. J Hazard Mater 424(C):127637. https://doi.org/10.1016/j.jhazmat.2021.127637

    Article  Google Scholar 

  30. Yiqiong Y, Wenqing J, Xingyu L, Huidong L, Hongjia C, Fukun B, Zenghui Z, Jingcheng X, Xiaodong Z (2022) Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe. J Hazard Mater 424(D):127640. https://doi.org/10.1016/j.jhazmat.2021.127640

    Article  Google Scholar 

  31. Yiqiong Y, Yixin G, Huidong L, Borui J, Zenghui Z, Xiaodong Z (2022) Bicarbonate-enhanced iron-based Prussian blue analogs catalyze the Fenton-like degradation of p-nitrophenol. J Colloid Interface Sci 608(3):2884–2895. https://doi.org/10.1016/j.jcis.2021.11.015

    Article  Google Scholar 

  32. Ting W, Qingyun H, Zhifeng L, Binbin S, Qinghua L, Yuan P, Jing H, Zan P, Yang L, Chenhui Z, Xingzhong Y, Lin T, Shanxi G (2022) Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C3N4. J Hazard Mater 424(A):127177. https://doi.org/10.1016/j.jhazmat.2021.127177

    Article  Google Scholar 

  33. Miao H, Qinghua L, Lin T, Zhifeng L, Binbin S, Qingyun H, Ting W, Songhao L, Yuan P, Chenhui Z, Chengang N, Yumeng H (2021) Advances of covalent organic frameworks based on magnetism: classification, synthesis, properties, applications. Coord Chem Rev 559:214219. https://doi.org/10.1016/j.ccr.2021.214219

    Article  Google Scholar 

  34. Xiansheng Z, Shehua T, Dianlian H, Zhifeng L, Binbin S, Qinghua L, Ting W, Yuan P, Jing H, Yang L, Min C, Ming C (2021) Recent advances of Zr based metal organic frameworks photocatalysis: energy production and environmental remediation. Coord Chem Rev 448:214177. https://doi.org/10.1016/j.ccr.2021.214177

    Article  Google Scholar 

  35. Yuan P, Xiaojuan L, Wei Z, Binbin S, Zhifeng L, Qinghua L, Ting W, Qingyun H, Jing H, Zan P, Yang L, Chenhui Z (2022) Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction. Chem Eng J 427:132032. https://doi.org/10.1016/j.cej.2021.132032

    Article  Google Scholar 

  36. Qinghua L, Xiaojuan L, Binbin S, Lin T, Zhifeng L, Wei Z, Shanxi G, Yang L, Qingyun H, Ting W, Yuan P, Shehua T (2021) Construction of fish-scale tubular carbon nitride-based heterojunction with boosting charge separation in photocatalytic tetracycline degradation and H2O2 production. Chem Eng J 426:130831. https://doi.org/10.1016/j.cej.2021.130831

    Article  Google Scholar 

  37. Zhifeng L, Jing H, Binbin S, Hua Z, Qinghua L, Qingyun H, Ting W, Yuan P, Zan P, Xingzhong Y, Yang L, Chenhui Z (2021) In-situ construction of 2D/1D Bi2O2CO3 nanoflake/S-doped g-C3N4 hollow tube hierarchical heterostructure with enhanced visible-light photocatalytic activity. Chem Eng J 426:130767. https://doi.org/10.1016/j.cej.2021.130767

    Article  Google Scholar 

  38. Chenhui Z, Binbin S, Ming Y, Zhifeng L, Qinghua L, Qingyun H, Ting W, Yang L, Yuan P, Jing H, Jiajia W, Jie L, Lin T (2021) Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: a review. Chem Eng J 416:128829. https://doi.org/10.1016/j.cej.2021.128829

    Article  Google Scholar 

  39. Binbin S, Zhifeng L, Guangming Z, Yang L, Qinghua L, Qingyun H, Ting W, Yuan P, Jing H, Zan P, Songhao L, Chao L, Xiaojuan L, Shehua T, Jie L (2021) Synthesis of 2D/2D CoAl-LDHs/Ti3C2Tx Schottky-junction with enhanced interfacial charge transfer and visible-light photocatalytic performance. Appl Catal B 286:119867. https://doi.org/10.1016/j.apcatb.2020.119867

    Article  Google Scholar 

  40. Chen WS, Chen YC, Lee CH (2022) Modified activated carbon for copper ion removal from aqueous solution. Processes 10:150. https://doi.org/10.3390/pr10010150

    Article  Google Scholar 

  41. El-Wakil AM, Abou El-Maaty WM, Awad FS (2014) Removal of lead from aqueous solution on activated carbon and modified activated carbon prepared from dried water hyacinth plant. J Anal Bioanal Technol 2(5):187. https://doi.org/10.4172/2155-9872.1000187

    Article  Google Scholar 

  42. Zuo X, Liu Z, Chen M (2016) Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar. Bioresour Technol 207:262–267. https://doi.org/10.1016/j.biortech.2016.02.032

    Article  Google Scholar 

  43. Aryee AA, Mpatani FM, Zhang X, Kani AN, Dovi E, Han R, Li Z, Qu L (2020) Iron (III) and iminodiacetic acid functionalized magnetic peanut husk for the removal of phosphate from solution: characterization, kinetic and equilibrium studies. J Clean Prod 268:122191. https://doi.org/10.1016/j.jclepro.2020.122191

    Article  Google Scholar 

  44. Karthikeyan T, Rajgopal S, Miranda LR (2005) Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J Hazard Mater 124(1–3):192–199. https://doi.org/10.1016/j.jhazmat.2005.05.003

    Article  Google Scholar 

  45. Yorgun S, Yıldız D (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131. https://doi.org/10.1016/j.jtice.2015.02.032

    Article  Google Scholar 

  46. Fierro V, Muniz G, Basta A, El-Saied H, Celzard A (2010) Rice straw as precursor of activated carbons: activation with orthophosphoric acid. J Hazard Mater 181(1–3):27–34. https://doi.org/10.1016/j.jhazmat.2010.04.062

    Article  Google Scholar 

  47. Xu D, Yang L, Zhao M, Zhang J, Syed-Hassan SSA, Sun H, Hu X, Zhang H, Zhang S (2021) Conversion and transformation of N species during pyrolysis of wood-based panels: a review. Environ Pollut 270:116120. https://doi.org/10.1016/j.envpol.2020.116120

    Article  Google Scholar 

  48. Haroon H, Shah JA, Khan MS, Alam T, Khan R, Asad SA, Ali MA, Farooq G, Iqbal M, Bilal M (2020) Activated carbon from a specific plant precursor biomass for hazardous Cr(VI) adsorption and recovery studies in batch and column reactors: isotherm and kinetic modeling. J Water Process Eng 38:101577. https://doi.org/10.1016/j.jwpe.2020.101577

    Article  Google Scholar 

  49. Md AA, Imran RC, Mohammad AJM, Shakhawat C (2019) Highly porous carboxylated activated carbon from jute stick for removal of Pb2+ from aqueous solution. Environ Sci Pollut Res 26:22656–22669. https://doi.org/10.1007/s11356-019-05556-6

    Article  Google Scholar 

  50. Food and Agricultural Organization of the United Nation, Future fibres. 2019, Available at: http://www.fao.org/economic/futurefibres/fibres/jute/en/. Accessed 27 Feb. 2021

  51. Cuiping C, Wenjun Z, Qi Y, Lifang Z, Lizhong Z (2014) Sorption characteristics of nitrosodiphenylamine (NDPhA) and diphenylamine (DPhA) onto organo-bentonite from aqueous solution. Chem Eng J 240:487–493. https://doi.org/10.1016/j.cej.2013.10.099

    Article  Google Scholar 

  52. Mohammad, R. I, Md, N. N, Mohammad, N. I (2003) The fuel properties of pyrolytic oils derived from carbonaceous solid wastes in Bangladesh. J. Teknol. 38 (1): 75–89. https://doi.org/10.11113/jt.v38.484

  53. Dada AO, Olalekan AP, Olatunya AM, Dado O (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR-JAC 3(1):38–45. https://doi.org/10.9790/5736-0313845

    Article  Google Scholar 

  54. Uduakobong AE, Augustine OI (2020) Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes 8(6):665–680. https://doi.org/10.3390/pr8060665

    Article  Google Scholar 

  55. Al-Hamouz OCS, Amayreh MY (2016) Removal of lead(II) and nickel(II) ions from aqueous solution via Bermuda grass biomassm. J Water Supply Res Technol AQUA 65(6):494–503. https://doi.org/10.2166/aqua.2016.013

    Article  Google Scholar 

  56. Sadeek AS, Nabel AN, Hassan HHH, Mostafa MA (2015) Metal adsorption by agricultural biosorbents: adsorption isotherm, kinetic and biosorbents chemical structures. Int J Biol Macromol 81:400–409. https://doi.org/10.1016/j.ijbiomac.2015.08.031

    Article  Google Scholar 

  57. Tempkin, M, Pyzhev, V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica U.R.S.S. 12: 327–356.

  58. Nazal MK, Rao D, Abuzaid N (2020) The nature and kinetics of 2,4-dimethylphenol adsorption in aqueous solution on biochar derived from Sargassum boveanum macroalgae. J Water Supply Res Technol AQUA 69(5):438–452. https://doi.org/10.2166/aqua.2020.142

    Article  Google Scholar 

  59. Weber JWJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–60. https://doi.org/10.1061/JSEDAI.0000430

    Article  Google Scholar 

  60. Shah SS, Cevik E, AbdulAziz M, Qahtan TF, Bozkurt A, Yamani ZH (2021) Jute sticks derived and commercially available activated carbons for symmetric supercapacitors with bio-electrolyte: a comparative study. Synth Met 277:116765. https://doi.org/10.1016/j.synthmet.2021.116765

    Article  Google Scholar 

  61. Knani S, Khalfaoui M, Hachicha MA, Lamine AB, Mathlouthi M (2012) Modelling of water vapour adsorption on foods products by a statistical physics treatment using the grand canonical ensemble. Food Chem 132(4):1686–1692. https://doi.org/10.1016/j.foodchem.2011.11.065

    Article  Google Scholar 

  62. Meroufel, B, Benali, O, Benyahia, M, Benmoussa, Y, Zenasni, M. A (2013) Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: characteristics, isotherm, kinetic and thermodynamic studies. J. Mater. Environ. Sci. 4 (3): 482–491. https://www.jmaterenvironsci.com/Document/vol4/vol4_N3/60-JMES-361-2013-Meroufel.pdf

  63. Revellame ED, Fortela DL, Sharp W, Hernandez R, Zappi ME (2020) Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: a review. Cleaner Eng Technol 1:100032. https://doi.org/10.1016/J.CLET.2020.100032

    Article  Google Scholar 

  64. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  65. Sahmoune MN (2019) Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environ Chem Lett 17:697–704. https://doi.org/10.1007/s10311-018-00819-z

    Article  Google Scholar 

  66. Saha, P, Chowdhury, S (2011) Insight into adsorption thermodynamics. Thermodynamics, Published, InTech. Available from. https://www.intechopen.com/chapters/13254

  67. Toifl, M, Tjandraatmadja, G, Low, J, Muster, T, Beale, D. Milestone 4 - Report, Synthetic wastewater composition for experimentation with entrained methane. Land & Water Flagship 2014, Project Reference 10TR1. https://waterportal.com.au/swf/images/swf-files/10tr1-milestone-4-wtp-synthetic-wastewater-formulae_published.pdf

  68. Shah SS, Qasem MAA, Berni R, Casino CD, Cai G, Contal S, Ahmad I, Siddiqui KS, Gatti E, Predieri S, Hausman JF, Cambier S, Guerriero G, Abdul Aziz M (2021) Physico-chemical properties and toxicological effects on plant and algal models of carbon nanosheets from a nettle fibre clone. Sci Rep 11:6945. https://doi.org/10.1038/s41598-021-86426-5

    Article  Google Scholar 

  69. Qinghua L, Binbin S, Shehua T, Zhifeng L, Lin T, Yang L, Min C, Qingyun H, Ting W, Yuan P, Jing H, Zan P (2021) Recent advances of melamine self-assembled graphitic carbon nitride-based materials: design, synthesis and application in energy and environment. Chem Eng J 405:126951. https://doi.org/10.1016/j.cej.2020.126951

    Article  Google Scholar 

  70. Qinghua L, Xiaojuan L, Jiajia W, Yang L, Zhifeng L, Lin T, Binbin S, Wei Z, Shanxi G, Min C, Qingyun H, Chengyang F (2021) In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: experiments and theories. J Hazard Mater 401:123355. https://doi.org/10.1016/j.jhazmat.2020.123355

    Article  Google Scholar 

  71. Binbin S, Jiajia W, Zhifeng L, Guangming Z, Lin T, Qinghua L, Qingyun H, Ting W, Yang L, Xingzhong Y (2020) Ti3C2Tx MXene decorated black phosphorus nanosheets with improved visible-light photocatalytic activity: experimental and theoretical studies. J Mater Chem A 8:5171–5185. https://doi.org/10.1039/C9TA13610J

    Article  Google Scholar 

  72. Ting W, Xiaojuan L, Yang L, Min C, Zhifeng L, Guangming Z, Binbin S, Qinghua L, Wei Z, Qingyun H, Wei Z (2020) Application of QD-MOF composites for photocatalysis: energy production and environmental remediation. Coord Chem Rev 304:213097. https://doi.org/10.1016/j.ccr.2019.213097

    Article  Google Scholar 

  73. Zan P, Xiaojuan L, Wei Z, Zhuotong Z, Zhifeng L, Chang Z, Yang L, Binbin S, Qinghua L, Wangwang T, Xingzhong Y (2020) Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ Int 134:105298. https://doi.org/10.1016/j.envint.2019.105298

    Article  Google Scholar 

  74. Boudiaf HZ, Boutahala M (2011) Adsorption of 2,4,5-trichlorophenol by organo-montmorillonites from aqueous solutions: kinetics and equilibrium studies. Chem Eng J 170(1):120–126. https://doi.org/10.1016/j.cej.2011.03.039

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the provided support by the King Fahd University of Petroleum and Minerals (KFUPM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mousa Yasir Amayreh or Mazen Khaled Nazal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Synopsis

The proposed work focuses on using the activated carbon material prepared from a cheap and available natural biomass by-product (jute stick). The obtained material showed an excellent adsorbent capacity for the removal of highly toxic organic contaminant (N-nitrosodiphenylamine) from wastewater samples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amayreh, M.Y., Nazal, M.K., Aziz, M.A. et al. High performance adsorptive removal of N-nitrosodiphenylamine from aqueous solutions by jute stick–derived activated carbon: characteristics, isotherm, kinetic and thermodynamic, and reusability studies. Biomass Conv. Bioref. 14, 3101–3115 (2024). https://doi.org/10.1007/s13399-022-02569-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02569-z

Keywords

Navigation