Skip to main content

Advertisement

Log in

Enhancing anaerobic digestion of wild seaweed Gracilaria verrucosa by co-digestion with tofu dregs and washing pre-treatment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Marine biomass (such as wild seaweed Gracilaria verrucosa) is highly abundant in Indonesia and has been highlighted as a potential biomass resource for bioenergy production. Furthermore, agro-industrial waste (such as tofu dregs/TD which arises from large-scale production in the country) is rich in carbohydrates and proteins, and is therefore considered a viable feedstock for production of high-value added products. This study aimed to investigate the co-digestion of wild seaweed G. verrucosa (WGv) with TD and its impacts on biogas and methane production. The biochemical methane potential (BMP) test was operated for 28 days at temperature of 37 °C. The co-digestion of WGv with TD at 90:10 and 80:20 ratios significantly increased the specific methane potential (SMP), giving an average of 98 LCH4/kgVS and 120 L CH4/kgVS, respectively. Addition of co-digestion substrates promoted co-metabolism in the digesters, increasing the ability of the microorganism to effectively digest the organic matter present in the feedstock’s mixture. The washing pre-treatment reduced the concentration of inorganic compounds and salts within the wild seaweed G. verucosa, leading to an improvement in biogas and methane yield. The mass balance illustrated that this process configuration led to a reduction in the quantity of digestate to be managed (i.e. dewatering, transport, and land/soil application). This will subsequently reduce the cost and energy requirements for sludge management, estimated at 37%. Therefore, the co-digestion of WGv with TD and the application of a washing pre-treatment stage prior to AD can positively enhance biogas and methane production. In-depth investigation for optimal valorisation using AD technology is highly essential.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

BMP:

Biochemical methane potential

CGv:

Cultivated seaweed Gracilaria verrucosa

CM:

Cattle manure

CRS:

Carbonised rice straw

CV:

Calorific value

EC:

Electrical conductivity

EDX:

Energy dispersive X-ray

FVW:

Fruit and vegetable waste

FW:

Food waste

MA:

Macroalgae

MB:

Municipal biosludge

MC:

Moisture content

MEMR:

Ministry of Energy and Mineral Resources, Republic of Indonesia

SBP:

Specific biogas production

SEM:

Scanning electron microscopy

SMP:

Specific methane potential

SMEs:

Small- and medium-scale enterprises

SS:

Sewage sludge

SW:

Seaweed waste

STP:

Standard temperature and pressure

TD:

Tofu dregs

TDS:

Total dissolved salt

TS:

Total solids

TWAS:

Thickened waste activated sludge

VFA:

Volatile fatty acid

VS:

Volatile solids

WFO:

Waste frying oil

WGv:

Wild seaweed Gracilaria verrucosa

WP:

Waste paper

WW:

Wet weight

References

  1. Abas N, Kalair A, Khan N (2015) Review of fossil fuels and future energy technologies. Futures 69:31–49. https://doi.org/10.1016/j.futures.2015.03.003

    Article  Google Scholar 

  2. York R, Bell SE (2019) Energy transitions or additions?: why a transition from fossil fuels requires more than the growth of renewable energy. Energy Res Soc Sci 51:40–43. https://doi.org/10.1016/j.erss.2019.01.008

    Article  Google Scholar 

  3. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  4. Simangunsong BCH, Sitanggang VJ, Manurung EGT, Rahmadi A, Moore GA, Aye L, Tambunan AH (2017) Potential forest biomass resource as feedstock for bioenergy and its economic value in Indonesia. For Pol Econ 81:10–17. https://doi.org/10.1016/j.forpol.2017.03.022

    Article  Google Scholar 

  5. MEMR (2020) Strategic plan of the directorate general of new, renewable energy and energy conservation (NREEC) 2020–2024. Minist Energy Miner Resour. Jakarta. https://ebtke.esdm.go.id/post/2020/05/18/2540/rencana.strategis.renstra.ditjen.ebtke.2020-2024. Accessed 18 Nov 2021

  6. Bulkowska K, Mariusz Z, Ewa G, Artur K (2016) Biomass for biofuel. Taylor and Francis Group, London

    Book  Google Scholar 

  7. Carlos RM, Khang DB (2008) Characterization of biomass energy projects in Southeast Asia. Biomass Bioenergy 32:525–532. https://doi.org/10.1016/j.biombioe.2007.11.005

    Article  Google Scholar 

  8. Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1–15. https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  9. McCarthy J, Zen Z (2010) Regulating the oil palm boom: assessing the effectiveness of environmental governance approaches to agro-industrial pollution in Indonesia. Law Policy 32:153–179. https://doi.org/10.1111/j.1467-9930.2009.00312.x

    Article  Google Scholar 

  10. Federici F, Fava F, Kalogerakis N, Mantzavinos D (2009) Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill wastewaters. J Chem Technol Biotechnol 84:895–900. https://doi.org/10.1002/jctb.2165

    Article  Google Scholar 

  11. Berbel J, Posadillo A (2018) Review and analysis of alternatives for the valorisation of agro-industrial olive oil by-products. Sustainability 10:1–9. https://doi.org/10.3390/su10010237

    Article  Google Scholar 

  12. Suhartini S, Nurika I, Paul R, Melville L (2021) Estimation of biogas production and the emission savings from anaerobic digestion of fruit-based agro-industrial waste and agricultural crops residues. BioEnergy Res 14:844–859. https://doi.org/10.1007/s12155-020-10209-5

  13. Evcan E, Tari C (2015) Production of bioethanol from apple pomace by using cocultures: conversion of agro-industrial waste to value added product. Energy 88:775–782. https://doi.org/10.1016/j.energy.2015.05.090

    Article  Google Scholar 

  14. Domínguez-Bocanegra AR, Torres-Muñoz JA, López RA (2015) Production of bioethanol from agro-industrial wastes. Fuel 149:85–89. https://doi.org/10.1016/j.fuel.2014.09.062

    Article  Google Scholar 

  15. Abdelhady HH, Elazab HA, Ewais EM, Saber M, El-Deab MS (2020) Efficient catalytic production of biodiesel using nano-sized sugar beet agro-industrial waste. Fuel 261:1–12. https://doi.org/10.1016/j.fuel.2019.116481

    Article  Google Scholar 

  16. Oceguera-Contreras E, Aguilar-Juárez O, Oseguera-Galindo D, Macías-Barragán J, Bolaños-Rosales R, Mena-Enríquez M, Arias-García A, Montoya-Buelna M, Graciano-Machuca O, De León-Rodríguez A (2019) Biohydrogen production by vermihumus-associated microorganisms using agro industrial wastes as substrate. Int J Hydrogen Energy 44:9856–9865. https://doi.org/10.1016/j.ijhydene.2018.10.236

    Article  Google Scholar 

  17. Damayanti R, Sandra S, Nanda NR (2020) The effect of adding rice straw charcoal to the processing of bio-pellet from cacao pod husk. Adv Food Sci Sustain Agric Agroind Eng 3:81–90. https://doi.org/10.21776/ub.afssaae.2020.003.02.6

    Article  Google Scholar 

  18. REEEP (2012) Planning and policy support for producing RE biogas in the Indonesian tofu industry. https://www.reeep.org/projects/planningand-policy-support-producing-re-biogas-indonesian-tofu-industry. Accessed 2 Feb 2022

  19. REEEP (2012) Tofu production: a massive opportunity for RE biogas in Indonesia. https://www.reeep.org/news/tofu-production-massive-opportunity-re-biogas-indonesia. Accessed 2 Feb 2022

  20. Li S, Dan Z, Kejuan L, Yingnan Y, Zhongfang L, Zhenya Z (2013) Soybean curd residue: composition, utilization and related limiting factors. Int Sch Res Not 2013:1–8. https://doi.org/10.1155/2013/423590

    Article  Google Scholar 

  21. Mateos-Aparicio I, Redondo-Cuenca M, Villanueva-Suarez A (2010) Isolation and characterization of cell wall polysaccharides from legume by-products: Okara (soymilk residue), peapod and broad bean pod. Food Chem 122:339–345. https://doi.org/10.1016/j.foodchem.2010.02.042

    Article  Google Scholar 

  22. Ugwuanyi JO, McNeil B, Harvey LM (2009) Production of protein-enriched feed using agro-industrial residues as substrates. In: Pandey A (ed) Nee’Nigam PS. Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht, pp 77–103

    Google Scholar 

  23. Kristanto GA, Asaloe H (2017) Assessment of anaerobic biodegradability of five different solid organic wastes. AIP Conf Proc 1826(0020029):1–7. https://doi.org/10.1063/1.4979245

  24. Choe U, Mustafa AM, Zhang X, Sheng K, Zhou X, Wang K (2021) Effects of hydrothermal pretreatment and bamboo hydrochar addition on anaerobic digestion of tofu residue for biogas production. Bioresour Technol 336:1–10. https://doi.org/10.1016/j.biortech.2021.125279

    Article  Google Scholar 

  25. Song Y, Meng S, Chen G, Yan B, Zhang Y, Tao J, Li Y, Li J (2021) Co-digestion of garden waste, food waste, and tofu residue: effects of mixing ratio on methane production and microbial community structure. J Environ Chem Eng 9:1–10. https://doi.org/10.1016/j.jece.2021.105901

    Article  Google Scholar 

  26. FAO (2021) Global seaweeds and microalgae production, 1950–2019. https://www.fao.org/3/cb4579en/cb4579en.pdf. Accessed 2 Feb 2022

  27. Roberts DA, Paul NA, Dworjanyn SA, Bird MI, De Nys R (2015) Biochar from commercially cultivated seaweed for soil amelioration. Sci Rep 5:1–5. https://doi.org/10.1038/srep09665

    Article  Google Scholar 

  28. Efendi F, Handajani R, Nursalam N (2015) Searching for the best agarose candidate from genus Gracilaria, Eucheuma, Gelidium and local brands. Asian Pac J Trop Biomed 10:865–869. https://doi.org/10.1016/j.apjtb.2015.06.009

    Article  Google Scholar 

  29. Baghel RS, Kumari P, Reddy CRK, Jha B (2014) Growth, pigments, and biochemical composition of marine red alga Gracilaria crassa. J App Phycol 26:2143–2150. https://doi.org/10.1007/s10811-014-0250-5

    Article  Google Scholar 

  30. McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524. https://doi.org/10.1023/B:JAPH.0000004345.31686.7f

    Article  Google Scholar 

  31. Meinita MDN, Marhaeni B, Oktaviani DF, Jeong GT, Hong YK (2018) Comparison of bioethanol production from cultivated versus wild Gracilaria verrucosa and Gracilaria gigas. J Appl Phycol 30:143–147. https://doi.org/10.1007/s10811-017-1297-x

    Article  Google Scholar 

  32. Kawaroe M, Dohong S, Lestari D (2017) Great potency of rejected macroalgae Gracilaria verrucosa for biogas production by anaerobic digestion and HS scrubber. World Appl Sci J 35:661–668

    Google Scholar 

  33. Abomohra AE-F, Sheikh HM, El-Naggar AH, Wang Q (2021) Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: experimental and feasibility study towards industrialization. Renew Sustain Energy Rev 149:1–13. https://doi.org/10.1016/j.rser.2021.111335

    Article  Google Scholar 

  34. Yuan C, Wang S, Cao B, Hu Y, Abomohra AE-F, Wang Q, Qian L, Liu L, Liu X, He Z, Sun C (2019) Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: merging 2nd and 3rd generation feedstocks for enhanced bio-oil production. Energy 173:413–422. https://doi.org/10.1016/j.energy.2019.02.091

    Article  Google Scholar 

  35. Elshobary ME, El-Shenody RA, Abomohra AEF (2021) Sequential biofuel production from seaweeds enhances the energy recovery: a case study for biodiesel and bioethanol production. Int J Energy Res 45:6457–6467. https://doi.org/10.1002/er.6181

    Article  Google Scholar 

  36. Abomohra AE-F, El-Hefnawy ME, Wang Q, Huang J, Li L, Tang J, Mohammed S (2021) Sequential bioethanol and biogas production coupled with heavy metal removal using dry seaweeds: towards enhanced economic feasibility. J Clean Prod 316:1–10. https://doi.org/10.1016/j.jclepro.2021.128341

    Article  Google Scholar 

  37. Abomohra AE-F, Almutairi AW (2020) A close-loop integrated approach for microalgae cultivation and efficient utilization of agar-free seaweed residues for enhanced biofuel recovery. Bioresour Technol 317:1–11. https://doi.org/10.1016/j.biortech.2020.124027

    Article  Google Scholar 

  38. Pullen T (2015) Anaerobic digestion – making biogas – making energy: the Earthsan Expert Guide. Taylor & Francis Group, New York

    Book  Google Scholar 

  39. Taricska JR, Long DA, Chen JP, Hung YT, Zou SW (2009) Anaerobic digestion. In: Wang LK, Pereira NC, Hung YT (eds) Biological Treatment Processes, Handbook of Environmental Engineering, 8th edn. Humana Press, Totowa, pp 589–634

    Chapter  Google Scholar 

  40. Ibrahim MM, Narasimhan JV, Ramesh A (2015) Comparison of the predominantly premixed charge compression ignition and the dual fuel modes of operation with biogas and diesel as fuels. Energy 89:990–1000. https://doi.org/10.1016/j.energy.2015.06.033

    Article  Google Scholar 

  41. Jensen PD, Ge H, Batstone DJ (2011) Assessing the role of biochemical methane potential tests in determining anaerobic degradability rate and extent. Water Sci Technol 64:880–886. https://doi.org/10.2166/wst.2011.662

    Article  Google Scholar 

  42. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, Van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934. https://doi.org/10.2166/wst.2009.040

    Article  Google Scholar 

  43. Gunaseelan VN (2004) Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 26:389–399. https://doi.org/10.1016/j.biombioe.2003.08.006

    Article  Google Scholar 

  44. Suhartini S, Melville L, Amato T (2017) Pre-treatment of thickened waste activated sludge (TWAS) for enhanced biogas production via the application of a novel radial horn sonication technology. Water Sci Technol 75:2179–2193. https://doi.org/10.2166/wst.2017.069

    Article  Google Scholar 

  45. Sliem MA, El-Ansary S, Soliman W, Badr Y (2021) Enhancing biogas production of cow dung during anaerobic digestion using nanoferrites. Biomass Convers Biorefinery 1–8. https://doi.org/10.1007/s13399-021-01683-8

  46. Krisye K, Kawaroe M, Hasanudin U (2016) Anaerobic biodegradation of macroalgae Ulva sp. For biogas production with batch method. Oseanologi Limnol di Indones 1:57–65. https://doi.org/10.14203/oldi.2016.v1i1.48

    Article  Google Scholar 

  47. Kawaroe M, Salundik RW, Lestari D (2017) Comparison of biogas production from macroalgae Eucheuma cottonii in anaerobic degradation under different salinity conditions. World Appl Sci J 35:344–351

    Google Scholar 

  48. Suhartini S, Nurika I, Rahmah NL, Paul R, Melville L (2020) Potential of Gracilaria sp. as single- or co-digestion feedstock for biogas production. IOP Conf Ser Earth Environ Sci 460:012032. https://doi.org/10.1088/1755-1315/460/1/012032

    Article  Google Scholar 

  49. Ni’mah L, (2014) Biogas from solid waste of tofu production and cow manure mixture: composition effect. Chemica 1:1–9

    Google Scholar 

  50. Tedesco S, Mac Lochlainn D, Olabi A (2014) Particle size reduction optimization of Laminaria spp. biomass for enhanced methane production. Energy 76:857–862. https://doi.org/10.1016/j.energy.2014.08.086

    Article  Google Scholar 

  51. Montingelli ME, Benyounis KY, Stokes J, Olabi A (2016) Pretreatment of macroalgal biomass for biogas production. Energy Convers Manag 108:202–209. https://doi.org/10.1016/j.enconman.2015.11.008

    Article  Google Scholar 

  52. Farghali M, Yuhendra AP, Mohamed IM, Iwasaki M, Tangtaweewipat S, Ihara I, Sakai R, Umetsu K (2021) Thermophilic anaerobic digestion of Sargassum fulvellum macroalgae: biomass valorization and biogas optimization under different pre-treatment conditions. J Environ Chem Eng 9:1–9. https://doi.org/10.1016/j.jece.2021.106405

    Article  Google Scholar 

  53. Karray R, Hamza M, Sayadi S (2015) Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production. Bioresour Technol 187:205–213. https://doi.org/10.1016/j.biortech.2015.03.108

    Article  Google Scholar 

  54. Oliveira J, Alves M, Costa J (2014) Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresour Technol 162:323–330. https://doi.org/10.1016/j.biortech.2014.03.155

    Article  Google Scholar 

  55. Adams JMM, Schmidt A, Gallagher JA (2015) The impact of sample preparation of the macroalgae Laminaria digitata on the production of the biofuels bioethanol and biomethane. J Appl Phycol 27:985–991. https://doi.org/10.1007/s10811-014-0368-5

    Article  Google Scholar 

  56. Milledge JJ, Nielsen BV, Sadek MS, Harvey PJ (2018) Effect of freshwater washing pretreatment on Sargassum nuticum as a feedstock for biogas production. Energies 11:1–10. https://doi.org/10.3390/en11071771

    Article  Google Scholar 

  57. Suhartini S, Lestari YP, Nurika I (2019) Estimation of methane and electricity potential from canteen food waste. IOP Conf Ser Earth Env Sci 230(230):1–6. https://doi.org/10.1088/1755-1315/230/1/012075

    Article  Google Scholar 

  58. Hidayat N, Suhartini S, Utami RN, Pangestuti MB (2020) Anaerobic digestion of fungally pre-treated oil palm empty fruit bunches: energy and carbon emission footprint. IOP Conf Ser Earth Environ Sci 524:1–9. https://doi.org/10.1088/1755-1315/524/1/012019

    Article  Google Scholar 

  59. Hagos K, Zong J, Li D, Liu C, Lu X (2017) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sustain Energy Rev 76:1485–1496. https://doi.org/10.1016/j.rser.2016.11.184

    Article  Google Scholar 

  60. Suhartini S, Heaven S, Zhang Y, Banks CJ (2019) Antifoam, dilution and trace element addition as foaming control strategies in mesophilic anaerobic digestion of sugar beet pulp. Int Biodeterior Biodegrad 145:1–13. https://doi.org/10.1016/j.ibiod.2019.104812

    Article  Google Scholar 

  61. Suhartini S, Sihaloho S, Rahmah NL, Nurika I, Junaidi MA, Paul R, Melville R (2020) Effect of pre-treatment on anaerobic biodegradability of Gracilaria verrucosa. IOP Conf Ser Earth Environ Sci 475:1–9. https://doi.org/10.1088/1755-1315/475/1/012064

    Article  Google Scholar 

  62. APHA (2005) Standard methods for the examination of water and wastewater. American Water Works Association, Water Environment Federation. Washington, D.C.

  63. Farina A, Piergallini R, Doldo A, Salsano EP, Abballe F (1991) The determination of C-H-N by an automated elemental analyzer. Microchem J 43:181–190. https://doi.org/10.1016/S0026-265X(10)80003-7

    Article  Google Scholar 

  64. ASTM (1996) ASTM D2015: Standard test method for gross calorific value of solid fuel by the adiabatic bomb calorimeter. American Soc Test Mater. Washington, D.C.

  65. Buswell AM, Mueller HF (1952) Mechanisms of methane fermentation. Ind Eng Chem 44:550–552. https://doi.org/10.1021/ie50507a033

    Article  Google Scholar 

  66. Shi B, Lortscher P, Palfery D (2013) Algal biomass anaerobic biodegradability. J Appl Phycol 25:757–761. https://doi.org/10.1007/s10811-012-9912-3

    Article  Google Scholar 

  67. Strömberg S, Nistor M, Liu J (2014) Toward eliminating systematic errors caused by the experimental condition in biochemical methane potential (BMP) tests. Waste Manag 34:1939–1948. https://doi.org/10.1016/j.wasman.2014.07.018

    Article  Google Scholar 

  68. Lloyd JW, Heathcote JA (1985) Natural inorganic hydrochemistry in relation to ground water. Clarendon Press, Oxford

    Google Scholar 

  69. Suhartini S (2014) The anaerobic digestion of sugar beet pulp. Doctoral Thesis. Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom

  70. Kim J, Baek G, Kim J, Lee C (2019) Energy production from different organic wastes by anaerobic co-digestion: maximizing methane yield versus maximizing synergistic effect. Renew Energy 136:683–690. https://doi.org/10.1016/j.renene.2019.01.046

    Article  Google Scholar 

  71. Fraenkel JR, Wallen N, Hyun H (2006) Hot to design and evaluate research in education. Mc.Graw-Hill Inc, USA

    Google Scholar 

  72. Tait S, Harris PW, McCabe BK (2021) Biogas recovery by anaerobic digestion of Australian agro-industry waste: a review. J Clean Prod 229:1–16. https://doi.org/10.1016/j.jclepro.2021.126876

    Article  Google Scholar 

  73. Lim SJ, Fox P (2013) Biochemical methane potential (BMP) test for thickened sludge using anaerobic granular sludge at different inoculum/substrate ratios. Biotechnol Bioprocess Eng 18:306–312. https://doi.org/10.1007/s12257-012-0465-8

    Article  Google Scholar 

  74. Panichnumsin P, Nopharatana A, Ahring B, Chaiprasert P (2010) Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenerg 34:1117–1124. https://doi.org/10.1016/j.biombioe.2010.02.018

    Article  Google Scholar 

  75. Costa JC, Gonçalves PR, Nobre A, Alves MM (2012) Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresour Technol 114:320–326. https://doi.org/10.1016/j.biortech.2012.03.011

    Article  Google Scholar 

  76. Dioha IJ, Ikeme CH, Nafi’u T, Soba NI, Yusuf MBS (2014) Effect of carbon to nitrogen ratio on biogas production. Int Res J Nat Sci 2:27–36. https://doi.org/10.1016/0141-4607(79)90011-8

    Article  Google Scholar 

  77. Milledge J, Harvey P (2016) Ensilage and anaerobic digestion of Sargassum muticum. J Appl Phycol 28:3021–3030. https://doi.org/10.1007/s10811-016-0804-9

    Article  Google Scholar 

  78. Tsapekos P, Alvarado-Morales M, Kougias PG, Konstantopoulos K, Angelidaki I (2019) Co-digestion of municipal waste biopulp with marine macroalgae focusing on sodium inhibition. Energy Conver Manag 180:931–937. https://doi.org/10.1016/j.enconman.2018.11.048

    Article  Google Scholar 

  79. Zhang Y, Alam MA, Kong X, Wang Z, Li L, Sun Y, Yuan Z (2017) Effect of salinity on the microbial community and performance on anaerobic digestion of marine macroalgae. J Chem Technol Biotechnol 92:2392–2399. https://doi.org/10.1002/jctb.5246

    Article  Google Scholar 

  80. Oliveira J, Alves M, Costa J (2015) Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil. Bioresour Technol 175:480–485. https://doi.org/10.1016/j.biortech.2014.10.121

    Article  Google Scholar 

  81. Kumar P, Prajapati SK, Malik A, Vijay VK (2019) Evaluation of biomethane potential of waste algal biomass collected from eutrophied lake: effect of source of inocula, co-substrate, and VS loading. J Appl Phycol 31:533–545. https://doi.org/10.1007/s10811-018-1585-0

    Article  Google Scholar 

  82. Suhartini S, Naraswati A, Nurika I (2021) Effect of mixture ratio on co-digestion of vegetable and fruit waste with macro-algae, chicken manure and tofu dregs. IOP Conf Ser Earth Environ Sci 733:1–9. https://doi.org/10.1088/1755-1315/733/1/012140

    Article  Google Scholar 

  83. Elalami D, Monlau F, Carrere H, Abdelouahdi K, Charbonnel C, Oukarroum A, Zeroual Y, Barakat A (2020) Evaluation of agronomic properties of digestate from macroalgal residues anaerobic digestion: impact of pretreatment and co-digestion with waste activated sludge. Waste Manag Res 108:127–136. https://doi.org/10.1016/j.wasman.2020.04.019

    Article  Google Scholar 

  84. Sun H, Kovalovszki A, Tsapekos P, Alvarado-Morales M, Rudatis A, Wu S, Dong R, Kougias P, Angelidaki I (2019) Co-digestion of Laminaria digitata with cattle manure: a unimodel simulation study of both batch and continuous experiments. Bioresour Technol 276:361–368. https://doi.org/10.1016/j.biortech.2018.12.110

    Article  Google Scholar 

  85. Rodriguez C, Alaswad A, El-Hassan Z, Olabi AG (2018) Waste paper and macroalgae co-digestion effect on methane production. Energy 154:119–125. https://doi.org/10.1016/j.energy.2018.04.115

    Article  Google Scholar 

  86. Cogan M, Antizar-Ladislao B (2016) The ability of macroalgae to stabilise and optimise the anaerobic digestion of household food waste. Biomass Bioenerg 86:146–155. https://doi.org/10.1016/j.biombioe.2016.01.021

    Article  Google Scholar 

  87. Gu J (2016) Biodegradation testing: so many tests but very little new innovation. Appl Environ Biotechnol 1:92–95. https://doi.org/10.26789/AEB.2016.01.007

    Article  Google Scholar 

  88. Li Y, Liu L, Wang Q, Wu J, Liu T, Liu H, Hong Y, Huang T (2021) Enhanced anaerobic co-metabolism of coal gasification wastewater via the assistance of zero-valent iron. J Water Process Eng 40:1–10. https://doi.org/10.1016/j.jwpe.2020.101817

    Article  Google Scholar 

  89. Jin W, Xu X, Yang F, Li C, Zhou M (2018) Performance enhancement by rumen cultures in anaerobic co-digestion of corn straw with pig manure. Biomass Bioenerg 15:120–129. https://doi.org/10.1016/j.biombioe.2018.05.001

    Article  Google Scholar 

  90. Chen Y, He J, Wang YQ, Kotsopoulos TA, Kaparaju P, Zeng RJ (2016) Development of an anaerobic co-metabolic model for degradation of phenol, m-cresol and easily degradable substrate. Biochem Eng J 106:19–25. https://doi.org/10.1016/j.bej.2015.11.003

    Article  Google Scholar 

  91. Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 38:383–392. https://doi.org/10.1016/j.rser.2014.05.038

    Article  Google Scholar 

  92. Ahmadi-Pirlou M, Ebrahimi-Nik M, Khojastehpour M, Ebrahimi SH (2017) Mesophilic co-digestion of municipal solid waste and sewage sludge: effect of mixing ratio, total solids, and alkaline pretreatment. Int Biodeterior Biodegradation 125:97–104. https://doi.org/10.1016/j.ibiod.2017.09.004

    Article  Google Scholar 

  93. Abbassi-Guendouz A, Brockmann D, Trably E, Dumas C, Delgenès JP, Steyer JP, Escudié R (2012) Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 111:56–61. https://doi.org/10.1016/j.biortech.2012.01.174

    Article  Google Scholar 

  94. Pan Y, Zhi Z, Zhen G, Lu X, Bakonyi P, Li YY, Zhao Y, Banu JR (2019) Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms. Fuel 253:40–49. https://doi.org/10.1016/j.fuel.2019.04.084

    Article  Google Scholar 

  95. Tabassum MR, Xia A, Murphy JD (2016) The effect of seasonal variation on biomethane production from seaweed and on application as a gaseous transport biofuel. Bioresour Technol 209:213–219. https://doi.org/10.1016/j.biortech.2016.02.120

    Article  Google Scholar 

  96. Gelegenis J, Georgakakis D, Angelidaki I, Mavris V (2007) Optimization of biogas production by co-digesting whey with diluted poultry manure. Renew Energy 32:2147–2160. https://doi.org/10.1016/j.renene.2006.11.015

    Article  Google Scholar 

  97. Alburquerque JA, De la Fuente C, Campoy M, Carrasco L, Nájera I, Baixauli C, Caravaca F, Roldán A, Cegarra J, Bernal M (2012) Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur J Agron 43:119–128. https://doi.org/10.1016/j.eja.2012.06.001

    Article  Google Scholar 

  98. Prajapati SK, Kumar P, Malik A, Vijay VK (2014) Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: a closed loop bioenergy generation process. Bioresour Technol 158:174–180. https://doi.org/10.1016/j.biortech.2014.02.023

    Article  Google Scholar 

  99. Yuan X, Wen B, Ma X, Zhu W, Wang X, Chen S, Cui Z (2014) Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment metho. Bioresour Technol 154:1–9. https://doi.org/10.1016/j.biortech.2013.11.090

    Article  Google Scholar 

  100. Gudka B, Jones JM, Lea-Langton AR, Williams A, Saddawi A (2016) A review of the mitigation of deposition and emission problems during biomass combustion through washing pre-treatment. J Energy Inst 89:159–171. https://doi.org/10.1016/j.joei.2015.02.007

    Article  Google Scholar 

  101. Costa CS, Cardoso SL, Nishikawa E, Vieira MG, da Silva MG (2016) Characterization of the residue from double alginate extraction from Sargassum filipendula seaweed. Chem Eng Trans 52:133–138. https://doi.org/10.3303/CET1652023

    Article  Google Scholar 

  102. Oliveira RC, Hammer P, Guibal E, Taulemesse JM, Garcia O Jr (2014) Characterization of metal–biomass interactions in the lanthanum (III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: preliminary studies. Chem Eng J 239:381–391. https://doi.org/10.1016/j.cej.2013.11.042

    Article  Google Scholar 

  103. P’yanova LG, Baklanova ON, Likholobov VA, Drozdov VA, Salanov AN, Talzi VP, Knyazheva OA (2013) Studies of the effect of surface modification of carbon sorbents by poly-N-vinylpyrrolidone using a complex of physicochemical and microbiological methods. Prot Met Phys Chem Surfaces 49:430–439. https://doi.org/10.1134/S2070205113040114

    Article  Google Scholar 

  104. Pednekar PA, Raman B (2013) Antimicrobial and antioxidant potential with FTIR analysis of Ampelocissus latifolia (Roxb.) Planch. leaves. Asian J Pharm Clin Res 6:157–162

    Google Scholar 

  105. Mungasavalli DP, Viraraghavan T, Jin YC (2007) Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloids Surfaces A Physicochem Eng Asp 301:214–223. https://doi.org/10.1016/j.colsurfa.2006.12.060

    Article  Google Scholar 

  106. Michalak I, Mironiuk M, Marycz K (2018) A comprehensive analysis of biosorption of metal ions by macroalgae using ICP-OES, SEM-EDX and FTIR techniques. PLoS One 13:e0205590. https://doi.org/10.1371/journal.pone.0205590

    Article  Google Scholar 

  107. Darko CNS, Agyei-Tuffour B, Faloye DF, Goosen NJ, Nyankson E, Dodoo-Arhin D (2022) Biomethane production from residual algae biomass (Ecklonia maxima): effects of inoculum acclimatization on yield. Waste Biomass Valor 13: 497–509. https://doi.org/10.1007/s12649-021-01497-9

  108. Jard G, Dumas C, Delgenès JP, Marfaing H, Sialve B, Steyer JP, Carrère H (2013) Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochem Eng J 79:253–258. https://doi.org/10.1016/j.bej.2013.08.011

    Article  Google Scholar 

  109. Pastare L, Aleksandrovs I, Lauka D, Romagnoli F (2016) Mechanical pre-treatment effect on biological methane potential from marine macro algae: results from batch tests of Fucus vesiculosus. Energy Procedia 95:351–357. https://doi.org/10.1016/j.egypro.2016.09.021

    Article  Google Scholar 

  110. Rodriguez C, Alaswad A, Mooney J, Prescott T, Olabi AG (2015) Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process Technol 138:765–779. https://doi.org/10.1016/j.fuproc.2015.06.027

    Article  Google Scholar 

  111. Pilli S, Yan S, Tyagi RD, Surampalli R (2016) Anaerobic digestion of ultrasonicated sludge at different solids concentrations - computation of mass-energy balance and greenhouse gas emissions. J Environ Manage 166:374–386. https://doi.org/10.1016/j.jenvman.2015.10.041

    Article  Google Scholar 

  112. Koupaie EH, Leiva MB, Eskicioglu C, Dutil C (2014) Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: process and cost-benefit analysis. Bioresour Technol 152:66–73. https://doi.org/10.1016/j.biortech.2013.10.072

    Article  Google Scholar 

  113. Wehner M, Lichtmannegger T, Robra S, Lopes ADCP, Ebner C, Bockreis A (2021) Determination of the dewatered digestate amounts and methane yields from the co-digestion of biowaste as a basis for a cost-benefit analysis. Waste Manag 126:632–642. https://doi.org/10.1016/j.wasman.2021.03.030

    Article  Google Scholar 

  114. Fasahati P, Saffron C, Woo H, Liu J (2017) Potential of brown algae for sustainable electricity production through anaerobic digestion. Energy Convers Manag 135:297–307. https://doi.org/10.1016/j.enconman.2016.12.084

    Article  Google Scholar 

  115. Oladejo OS, Dahunsi SO, Adesulu-Dahunsi AT, Ojo SO, Lawal AI, Idowu EO, Olanipekun AA, Ibikunle RA, Osueke CO, Ajayi OE, Osueke N, Evbuomwan I (2020) Energy generation from anaerobic co-digestion of food waste, cow dung and piggery dung. Bioresour Technol 313:123694. https://doi.org/10.1016/j.biortech.2020.123694

    Article  Google Scholar 

  116. Kumar P, Bhattacharya A, Prajapati SK, Malik A, Vijay VK (2020) Anaerobic co-digestion of waste microalgal biomass with cattle dung in a pilot-scale reactor: effect of seasonal variations and long-term stability assessment. Biomass Convers Biorefinery 2020:1–9. https://doi.org/10.1007/s13399-020-00778-y

  117. Unpaprom Y, Pimpimol T, Whangchai K, Ramaraj R (2021) Sustainability assessment of water hyacinth with swine dung for biogas production, methane enhancement, and biofertilizer. Biomass Convers Biorefinery 11:849–860. https://doi.org/10.1007/s13399-020-00850-7

  118. Nong HTT, Unpaprom Y, Whanchai K, Ramaraj R (2020) Sustainable valorization of water primrose with cow dung for enhanced biogas production. Biomass Convers Biorefinery 2020:1–9. https://doi.org/10.1007/s13399-020-01065-6

Download references

Acknowledgements

The authors would like to thank British Council for the international research collaboration with Birmingham City University through the Newton Fund Institutional Link Scheme 2019–2020. Greatly thanks to Faculty of Agricultural Technology, Universitas Brawijaya, for in-kind contributions to support this research.

Funding

The authors would like to thank Ministry of Research, Technology, and Higher Education for the research funding provided through Penelitian Dasar Multi Tahun (Multi Year Basic Research) Scheme 2019–2021 (Grant Number 7/E/KPT/2019 and Contract Number 330.1/UN10.C10/PN/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Suhartini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Co-digestion of wild seaweed G. verrucosa (WGv) with tofu dregs (TD) led to higher process performance compared to mono-digestion

• Biogas and methane yields were improved by 1.2- and 1.7-fold depending on the mixing ratio

• Synergistic effects of co-digesting WGv with TD were observed for all ratios

• Washing as a pre-treatment prior mono-digestion of WGv increased the methane yield by 33.11%

• Inhibition attributed to salt concentrations was evident on anaerobic digestion of unwashed WGv

Supplementary Information

Below is the link to the electronic supplementary material.

13399_2022_2507_MOESM1_ESM.jpg

Supplementary file1 (JPG 145 KB) Fig. S1. SEM images of diatom from: (a) unwashed and (b) washed WGv. Magnification of 500x (200μm)

13399_2022_2507_MOESM2_ESM.jpg

Supplementary file2 (JPG 63 KB) Fig. S2. Trends in daily SBP (a) and SMP (b) from BMP trials of unwashed and washed WGv. Error bars represents standard deviation from three measurements

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhartini, S., Indah, S.H., Rahman, F.A. et al. Enhancing anaerobic digestion of wild seaweed Gracilaria verrucosa by co-digestion with tofu dregs and washing pre-treatment. Biomass Conv. Bioref. 13, 4255–4277 (2023). https://doi.org/10.1007/s13399-022-02507-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02507-z

Keywords

Navigation