Skip to main content

Advertisement

Log in

Hydrothermal carbonization of biomass: experimental study, energy balance, process simulation, design, and techno-economic analysis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, the energy balance and techno-economic analysis of hydrothermal carbonization (HTC) of avocado stone (AS) were carried out to determine the use of hydrochar as a solid fuel. The experimental data obtained for HTC of AS were used to adjust a simulation model at an industrial scale using Aspen Plus®. The process was simulated, including all required equipment and stages to transform this biomass into dry hydrochar. The simulation result showed that the HTC process is energetically efficient for biomass water ratios above 10 wt.% at different operating temperatures (190–250 °C). The hydrochar obtained at 250 °C has a higher heating value (HHV) of up to 25.81 MJ/kg, and the energy yield of the process can reach 63.45%, while thermal efficiency reached up to 3.56 kWh of hydrochar per kWh of energy used in the process. In addition, the techno-economic analysis of the process showed that the process is economically feasible using hydrochar as pellet which has a competitive price compared to pelletized bulk pine wood, with hydrochar cost 9.64 $/GJHHV. Moreover, under the conditions studied, the initial capital recovery period was 3.7 years. This study could encourage the development of HTC plants and, therefore, the market for hydrochar pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Missaoui A, Bostyn S, Belandria V, Cagnon B, Sarh B et al (2017) Hydrothermal carbonization of dried olive pomace: energy potential and process performances. J Anal Appl Pyrol 128:281–290

    Article  Google Scholar 

  2. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891

    Article  Google Scholar 

  3. Foust TD, Aden A, Dutta A, Phillips S (2009) An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose 16(4):547–565

    Article  Google Scholar 

  4. Mazumder S, Saha P, McGaughy K, Saba A, Reza MT (2022) Technoeconomic analysis of co-hydrothermal carbonization of coal waste and food waste. Biomass Conversion and Biorefinery 12:39–49

    Article  Google Scholar 

  5. Yang L, Lu C, Gao Y, Lin Y, Xu J et al (2021) Hydrogen-rich gas production from the gasification of biomass and hydrothermal carbonization (HTC) aqueous phase. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01197-9

    Article  Google Scholar 

  6. Naderi M, Vesali-Naseh M (2019) Hydrochar-derived fuels from waste walnut shell through hydrothermal carbonization: characterization and effect of processing parameters. Biomass Conversion and Biorefinery 11:1443–1451

    Article  Google Scholar 

  7. Liu Z, Balasubramanian R (2012) Hydrothermal carbonization of waste biomass for energy generation. Procedia Environ Sci 16:159–166

    Article  Google Scholar 

  8. Heidari M, Salaudeen S, Dutta A, Acharya B (2018) Effects of process water recycling and particle sizes on hydrothermal carbonization of biomass. Energy Fuels 32(11):11576–11586

    Article  Google Scholar 

  9. Hitzl M, Corma A, Pomares F, Renz M (2015) The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass. Catal Today 257:154–159

    Article  Google Scholar 

  10. Xiao L-P, Shi Z-J, Xu F, Sun R-C (2012) Hydrothermal carbonization of lignocellulosic biomass. Biores Technol 118:619–623

    Article  Google Scholar 

  11. Atallah E, Kwapinski W, Ahmad MN, Leahy J, Alaả H et al (2019) Hydrothermal carbonization of olive mill wastewater: liquid phase product analysis. Journal of Environmental Chemical Engineering 7(1):102833

    Article  Google Scholar 

  12. Islam MA, Akber MA, Limon SH, Akbor MA, Islam MA (2019) Characterization of solid biofuel produced from banana stalk via hydrothermal carbonization. Biomass Convers Biorefinery 9(4):651–658

    Article  Google Scholar 

  13. dos Santos JV, Fregolente LG, Laranja MJ, Moreira AB, Ferreira OP et al (2022) Hydrothermal carbonization of sugarcane industry by-products and process water reuse: structural, morphological, and fuel properties of hydrochars. Biomass Conversion and Biorefinery 12:153–161

    Article  Google Scholar 

  14. Rasam S, Moraveji MK, Soria-Verdugo A, Salimi A (2021) Synthesis, characterization and absorbability of Crocus sativus petals hydrothermal carbonized hydrochar and activated hydrochar. Chem Eng Process-Process Intensif 159:108236

    Article  Google Scholar 

  15. Mahmood R, Parshetti GK, Balasubramanian R (2016) Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil. Energy 102:187–198

    Article  Google Scholar 

  16. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod Biorefin 4(2):160–177

    Article  Google Scholar 

  17. Lucian M, Fiori L (2017) Hydrothermal carbonization of waste biomass: process design, modeling, energy efficiency and cost analysis. Energies 10(2):211

    Article  Google Scholar 

  18. Burguete P, Corma A, Hitzl M, Modrego R, Ponce E et al (2016) Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization. Green Chem 18(4):1051–1060

    Article  Google Scholar 

  19. Stemann J, Erlach B, Ziegler F (2013) Hydrothermal carbonisation of empty palm oil fruit bunches: laboratory trials, plant simulation, carbon avoidance, and economic feasibility. Waste Biomass Valorization 4(3):441–454

    Article  Google Scholar 

  20. Benavente V, Calabuig E, Fullana A (2015) Upgrading of moist agro-industrial wastes by hydrothermal carbonization. J Anal Appl Pyrol 113:89–98

    Article  Google Scholar 

  21. McLeod L, Flores D (2017) Mexico: avocado annual. USDA-Foreing-Agricultural-Service. https://www.fas.usda.gov/data/mexico-avocado-annual-2. Accessed 25 Oct 2020

  22. Ceballos AM, Montoya S (2013) Evaluación química de la fibra en semilla, pulpa y cáscara de tres variedades de aguacate. Biotecnol en el sect agropecuario y agroindustrial 11(1):103–112

    Google Scholar 

  23. Sangare D, Bostyn S, Moscosa-Santillan M, Belandria V, Gökalp I (2021) Quantification and kinetic study of the main compounds in biocrude produced by hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology Reports 15(1):100770

  24. Parshetti GK, Hoekman SK, Balasubramanian R (2013) Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Biores Technol 135:683–689

    Article  Google Scholar 

  25. Khan N, Mohan S, Dinesha P (2021) Regimes of hydrochar yield from hydrothermal degradation of various lignocellulosic biomass: a review. Journal of Cleaner Production 288:125629

  26. Libra JA, Ro KS, Kammann C, Funke A, Berge ND et al (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1):71–106

    Article  Google Scholar 

  27. Jain A, Balasubramanian R, Srinivasan M (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem Eng J 283:789–805

    Article  Google Scholar 

  28. Pavlovic I, Knez Z, Skerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub-and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric food Chem 61(34):8003–8025

    Article  Google Scholar 

  29. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378

    Article  Google Scholar 

  30. Reza MT, Andert J, Wirth B, Busch D, Pielert J et al (2014) Hydrothermal carbonization of biomass for energy and crop production. Appl Bioenergy 1(1):11–29

    Article  Google Scholar 

  31. Guo S, Dong X, Wu T, Shi F, Zhu C (2015) Characteristic evolution of hydrochar from hydrothermal carbonization of corn stalk. J Anal Appl Pyrol 116:1–9

    Article  Google Scholar 

  32. Lopez-Velazquez M, Santes V, Balmaseda J, Torres-Garcia E (2013) Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrol 99:170–177

    Article  Google Scholar 

  33. Pandey K, Pitman A (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegradation 52(3):151–160

    Article  Google Scholar 

  34. Himmelsbach DS, Khalili S, Akin DE (2002) The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax (Linum usitatissimum L) stems. J Sci Food Agric 82(7):685–696

    Article  Google Scholar 

  35. Kubovský I, Kačíková D, Kačík F (2020) Structural changes of oak wood main components caused by thermal modification. Polymers 12(2):485

    Article  Google Scholar 

  36. Charis G, Danha G, Muzenda E (2020) Characterizations of biomasses for subsequent thermochemical conversion: a comparative study of pine sawdust and Acacia Tortilis. Processes 8(5):546

    Article  Google Scholar 

  37. He C, Lin H, Dai L, Qiu R, Tang Y et al (2020) Waste shrimp shell-derived hydrochar as an emergent material for methyl orange removal in aqueous solutions. Environment international 134:105340

    Article  Google Scholar 

  38. Popescu C-M, Singurel G, Popescu M-C, Vasile C, Argyropoulos DS et al (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohyd Polym 77(4):851–857

    Article  Google Scholar 

  39. Braovac S, Kutzke H (2012) The presence of sulfuric acid in alum-conserved wood–Origin and consequences. J Cult Herit 13(3):S203–S208

    Article  Google Scholar 

  40. Lucian M, Volpe M, Gao L, Piro G, Goldfarb JL et al (2018) Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233:257–268

    Article  Google Scholar 

  41. Becker R, Dorgerloh U, Paulke E, Mumme J, Nehls I (2014) Hydrothermal carbonization of biomass: major organic components of the aqueous phase. Chem Eng Technol 37(3):511–518

    Article  Google Scholar 

  42. Wirth B, Mumme J, Erlach B (2012) Anaerobic treatment of waste water derived from hydrothermal carbonization. 20th European Biomass Conference and Exhibition. https://doi.org/10.5071/20thEUBCE2012-2AO.4.3

  43. Uddin MH, Reza MT, Lynam JG, Coronella CJ (2014) Effects of water recycling in hydrothermal carbonization of loblolly pine. Environ Prog Sustainable Energy 33(4):1309–1315

    Article  Google Scholar 

  44. Sliz M, Wilk M (2020) A comprehensive investigation of hydrothermal carbonization: energy potential of hydrochar derived from Virginia mallow. Renewable Energy 156:942–950

    Article  Google Scholar 

  45. Stemann J, Putschew A, Ziegler F (2013) Hydrothermal carbonization: process water characterization and effects of water recirculation. Biores Technol 143:139–146

    Article  Google Scholar 

  46. Chae K, Jang A, Yim S, Kim IS (2008) The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Biores Technol 99(1):1–6

    Article  Google Scholar 

  47. Sangare D, Bostyn S, Moscosa-Santillan M, Gökalp I (2021) Hydrodynamics, heat transfer and kinetics reaction of CFD modeling of a batch stirred reactor under hydrothermal carbonization conditions. Energy 219:119635

    Article  Google Scholar 

  48. Liu Z, Quek A, Hoekman SK, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949

    Article  Google Scholar 

  49. Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Progress Sustain Energy: Off Publ Am Ins Chem Eng 28(3):435–440

    Article  Google Scholar 

  50. Thomsen MH, Thygesen A, Thomsen AB (2008) Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Biores Technol 99(10):4221–4228

    Article  Google Scholar 

  51. Turton R, Shaeiwitz JA, Bhattacharyya D, Whiting WB (2018) Analysis, synthesis and design of chemical processes. Pearson, Michigan

    Google Scholar 

  52. Véliz-Jaime MY, González-Diaz Y, Martínez-Despaigne Y (2019) Evaluación técnica y económica del proyecto de obtención de aceites esenciales. Tecnología Química 39(1):207–220

    Google Scholar 

  53. Baasel WD (1989) Preliminary chemical engineering plant design. Springer, New York

    Google Scholar 

  54. Turton R, Bailie RC, Whiting WB, Shaeiwitz JA (2008) Analysis, synthesis and design of chemical processes. Pearson, Michigan

    Google Scholar 

  55. Office of Strategic Iniciatives (2019) Wood pellet prices. New Hampshire government website. https://www.nh.gov/osi/energy/energy-nh/fuel-prices/wood-pellet-prices.htm. Accessed 26 June 2021

  56. Pellet MX (2021) Pellet México.https://pellet.mx/. Accessed 2 July 2021

  57. Trading Economics (2021) Coal markets. https://tradingeconomics.com/commodity/coal. Accessed 4 July 2021

Download references

Acknowledgements

The authors would like to thank the Institute of Metallurgy of UASLP for the help and equipment provided.

Funding

Diakaridia Sangaré grateful to CONACYT (Consejo Nacional de Ciencia y Tecnología de México) for granting the scholarship No. 659624. The authors are grateful to ICARE—CNRS- France and the Région Centre-Val de Loire for financial support within the INFLUX project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Moscosa-Santillan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 535 KB)

Supplementary file2 (DOCX 50 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangaré, D., Moscosa-Santillan, M., Aragón Piña, A. et al. Hydrothermal carbonization of biomass: experimental study, energy balance, process simulation, design, and techno-economic analysis. Biomass Conv. Bioref. 14, 2561–2576 (2024). https://doi.org/10.1007/s13399-022-02484-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02484-3

Keywords

Navigation