Skip to main content
Log in

Preliminary characterisation and valorisation of Ficus benjamina fruits for biofuel application

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Ficus benjamina (FB) is a perennial plant that serves ornamental purposes. Its fruits are nonedible and considered ‘waste’ with no defined application. This paper discusses the valorisation and identification of the potential of Ficus benjamina fruits as a suitable biofuel feedstock. The whole fruit was characterised by scanning electron microscopy (SEM), energy dispersive X-ray (EDS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and bomb calorimeter. In addition, the proximate and ultimate analyses were performed to determine their physical, thermal, and chemical properties for potential biofuel application. Pulverised Ficus benjamina fruits (PFB) have a porous morphology that makes them less dense with a crystallinity index of 25.5%. The moisture, ash, volatile matter, and fixed carbon contents were 9.29, 6.26, 64.35, and 20.10%, respectively. The higher heating value (19.74 MJ/kg) and lower heating value (18.55 MJ/kg) are comparable to other biomass feedstocks. The results establish the possibility of using PFB as a solid biofuel.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data supporting the findings of this study is available upon request.

References

  1. Tursi A (2019) A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J 6(2):962–979. https://doi.org/10.18331/BRJ2019.6.2.3

    Article  Google Scholar 

  2. Alatzas S, Moustakas K, Malamis D, Vakalis S (2019) Biomass potential from agricultural waste for energetic utilization in Greece. Energies 12(6):1095. https://doi.org/10.3390/en12061095

    Article  Google Scholar 

  3. Brinkman M, Levin-Koopman J, Wicke B, Shutes L, Kuiper M, Faaij A, van der Hilst F (2020) The distribution of food security impacts of biofuels, a Ghana case study. Biomass Bioenerg 141:105695. https://doi.org/10.1016/j.biombioe.2020.105695

    Article  Google Scholar 

  4. Dey P, Pal P, Kevin JD, Das DB (2020) Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process a critical review. Int Rev Chem Eng 36(3):333–367. https://doi.org/10.1515/revce-2018-0014

    Article  Google Scholar 

  5. Mat Aron NS, Khoo KS, Chew KW, Show PL, Chen W, Nguyen THP (2020) Sustainability of the four generations of biofuels – a review. Int J Energy Res. https://doi.org/10.1002/er.5557

    Article  Google Scholar 

  6. Randall RP (2012) A global compendium of weeds. Perth, Australia: Department of Agriculture and Food Western Australia, 1124 pp. http://www.cabi.org/isc/FullTextPDF/2013/20133109119.pdf. Accessed 05 Oct 2021

  7. Whistler WA (2000) Tropical ornamentals. Timber Press, Portland

    Google Scholar 

  8. Gilman EF, Watson DG (2007) Ficus benjamina, Fact Sheet ENH 410. Florida, USA: Environmental Horticulture Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida. http://edis.ifas.ufl.edu/st251. Accessed 05 Oct 2021

  9. Vargas-Garzón B, Molina-Prieto LF (2012) Ficus benjamina L. in the cities: high number of individuals, severe damages to infrastructure and expensive economic losses. Revista Nodo 13(7):93–101

    Google Scholar 

  10. Mahomoodally MF, Asif F, Rahman R, Nisar AIS (2019) A review of the pharmacological potential and phytochemical profile of Weeping Fig-Ficus benjamina L. Int J Chem Biochem Sci 16(2019):70–75

    Google Scholar 

  11. Lambert FR, Marshall AG (1991) Keystone characteristics of bird-dispersed ficus in a Malaysian lowland rain forest. J Ecol 79(3):793. https://doi.org/10.2307/2260668

    Article  Google Scholar 

  12. De Jong W (2014) Biomass composition, properties, and characterization. In de Jong W, van Ommen JR (Eds.), Biomass as a sustainable energy source for the future: Fundamentals of conversion processes (pp. 36–68). John Wiley & Sons. https://doi.org/10.1002/9781118916643.ch2

  13. Mishra RK, Mohanty K (2018) Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Convers Biorefin 8(4):799–812. https://doi.org/10.1007/s13399-018-0332-8

    Article  Google Scholar 

  14. Stella Mary G, Sugumaran P, Niveditha S, Ramalakshmi B, Ravichandran P, Seshadri S (2016) Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int J Recycl Org Waste Agric 5(1):43–53. https://doi.org/10.1007/s40093-016-0116-8

    Article  Google Scholar 

  15. Omoniyi TE, Olorunnisola AO (2014) Experimental characterisation of bagasse biomass material for energy production. Int J Eng Technol 4(10):582–589

    Google Scholar 

  16. ASTM D7582–15 (2015) Standard test methods for proximate analysis of coal and coke by macro thermogravimetric analysis, ASTM International, West Conshohocken, PA, www.astm.org. Accessed 10 Mar 2021

  17. Singh YD, Mahanta P, Bora U (2017) Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew Energy 103:490–500. https://doi.org/10.1016/j.renene.2016.11.039

    Article  Google Scholar 

  18. Norm UNE 32019–84 (1999) Combustibles Minerales sólidos: Determinación del Contenido en Materias Volátiles; AENOR: Madrid, Spain

  19. Basu P (2013) Biomass gasification, pyrolysis and torrefaction : practical design and theory. Academic Press, London, United Kingdom

    Google Scholar 

  20. Barbosa MM, Detmann E, Valadares Filho SC, Detmann KSC, Franco MO, Batista ED, Rocha GC (2017) Evaluation of methods for the quantification of ether extract contents in forage and cattle feces. An Acad Bras Ciênc 89(2):1295–1303. https://doi.org/10.1590/0001-3765201720160708

    Article  Google Scholar 

  21. Ciolacu D, Ciolacu F, Popa IV (2011) Amorphous cellulose – structure and characterization. Cellulose Chem Technol 45(1–2):13–21. https://doi.org/10.1021/acs.jnatprod.6b00235

    Article  Google Scholar 

  22. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Biores Technol 200(2016):1008–1018. https://doi.org/10.1016/j.biortech.2015.11.022

    Article  Google Scholar 

  23. Ayeni AO, Adeeyo OA, Oresegun OM, Oladimeji TE (2015) Compositional analysis of lignocellulosic materials: evaluation of an economically viable method suitable for woody and non-woody biomass. Am J Eng Res 4(4):14–19

    Google Scholar 

  24. Mansor AM, Lim JS, Ani FN, Hashim H, Ho WS (2019) Characteristics of cellulose, hemicellulose and lignin of md2 pineapple biomass. Chem Eng Trans 72:79–84. https://doi.org/10.3303/CET1972014

    Article  Google Scholar 

  25. Ogbebor OE, Ebhojiaye RS, Amiolemhen PE (2019) Characterization of dikanunt shell using scanning electron microscopy and X-ray diffractometry. Niger Res J Eng Environ Sci 4(2):828–833

    Google Scholar 

  26. Nádvorníková M, Banout J, Herák D, Verner V (2018) Evaluation of physical properties of rice used in traditional Kyrgyz Cuisine. Food Sci Nutr 6(6):1778–1787. https://doi.org/10.1002/fsn3.746

    Article  Google Scholar 

  27. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83:37–46

    Article  Google Scholar 

  28. Eze-Ilochi NO, Oti WJ (2017) Characterization of selected Nigerian indigenous biomass wastes for their suitability in biofuel production. Int J Pharm Sci Invent 6(9):1–8

    Google Scholar 

  29. Sánchez-Orozco R, Balderas Hernández P, Roa Morales G, Ureña Núñez F, Orozco Villafuerte J, Lugo Lugo V, Flores Ramírez N, Barrera Díaz CE, Cajero Vázquez P (2014) Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production. BioRes 9(2):1873–1885

    Article  Google Scholar 

  30. Li H, Mahmood N, Mac Z, Zhua M, Wanga J, Zhenga J, Yuanb Z, Weia Q, Xu C (2017) Preparation and characterization of bio-polyol and bio-based flexiblepolyurethane foams from fast pyrolysis of wheat straw. Ind Crops Prod 103:64–72. https://doi.org/10.1016/j.indcrop.2017.03.042

    Article  Google Scholar 

  31. Tumuluru JS (2015) Comparison of chemical composition and energy property of torrefied switchgrass and corn stover. Front Energy Res 3:46. https://doi.org/10.3389/fenrg.2015.00046

    Article  Google Scholar 

  32. Rambo MKD, Schmidt FL, Ferreira MMC (2015) Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta 144:696–703. https://doi.org/10.1016/j.talanta.2015.06.045

    Article  Google Scholar 

  33. Nwokolo N, Mamphweli S, Meyer E, Tangwe S (2014) Electrical performance evaluation of Johansson biomass gasifier system coupled to a 150 KVA generator. Renew Energy 71:695–700. https://doi.org/10.1016/j.renene.2014.06.018

    Article  Google Scholar 

  34. Pathak P, Mandavgane S, Kulkarni B (2017) Fruit peel waste: characterization and its potential uses. Curr Sci 113:444–454

    Article  Google Scholar 

  35. Rather MA, Khan NS, Gupta R (2017) Hydrothermal carbonization of macrophyte Potamogeton lucens for solid biofuel production. Eng Sci Technol Int J 20(1):168–174. https://doi.org/10.1016/j.jestch.2016.08.015

    Article  Google Scholar 

  36. Santos RM, Bispo DF, Granja HS, Sussuchi EM, Freitas Ramos ALD, LS, (2020) Pyrolysis of the Caupi bean pod (Vigna unguiculata): characterization of biomass and bio-oil. J Braz Chem Soc 31(6):1125–1136. https://doi.org/10.21577/0103-5053.20190277

    Article  Google Scholar 

  37. Shah MA, Khan MNS, Kumar V (2018) Biomass residue characterization for their potential application as biofuels. J Therm Anal Calorim 134:2137–2145. https://doi.org/10.1007/s10973-018-7560-9

    Article  Google Scholar 

  38. Pinto F, Gominho J, André RN, Gonçalves D, Miranda M, Varela F, Neves D, Santos J, Lourenço A, Pereira H (2017) Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments. Fuel 206:289–299. https://doi.org/10.1016/j.fuel.2017.06.008

    Article  Google Scholar 

  39. Kozlov A (2019) The study of the kinetics of formation of gaseous products during thermochemical conversion of woody biomass. Energy Systems Research 2019. E3S web of Conferences 114, https://doi.org/10.1051/e3sconf/201911407008

  40. Wu R, Beutler J, Baxter LL (2020) Non-catalytic ash effect on char reactivity. Appl Energy 260(2020):114358. https://doi.org/10.1016/j.apenergy.2019.114358

    Article  Google Scholar 

  41. Davies A, Soheilian R, Zhuo C, Levendis YA (2014) Pyrolytic conversion of biomass residues to gaseous fuels for electricity generation. J Energy Resour Technol 136(2):021101. https://doi.org/10.1115/1.4025286

    Article  Google Scholar 

  42. Zhou H, Meng A, Long Y, Li Q, Zhang Y (2014) Classification and comparison of municipal solid waste based on thermochemical characteristics. J Air Waste Manag Assoc 64(5):597–616. https://doi.org/10.1080/10962247.2013.873094

    Article  Google Scholar 

  43. Danish M, Naqvi M, Farooq U, Naqvi S (2015) Characterization of South Asian agricultural residues for potential utilization in future ‘energy mix’. The 7th International Conference on Applied Energy – ICAE2015. Energy Procedia 75:2974–2980. https://doi.org/10.1016/j.egypro.2015.07.604

    Article  Google Scholar 

  44. Zhou H, Long Y, Meng A, Li Q, Zhang Y (2013) The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochim Acta 566:36–43. https://doi.org/10.1016/j.tca.2013.04.040

    Article  Google Scholar 

  45. Rodriguez C, Gordillo G (2011) Adiabatic gasification and pyrolysis of coffee husk using air-steam for partial oxidation. J Combust. 2011:1–9. https://doi.org/10.1155/2011/303168

    Article  Google Scholar 

  46. Wang Q, Sarkarp J (2018) Pyrolysis behaviors of waste coconut shell and husk biomasses. Int J Energy Prod Mgmt 3(1):34–43. https://doi.org/10.2495/eq-v3-n1-34-43

    Article  Google Scholar 

  47. Abdeljaoued A, Querejeta N, Durán I, Álvarez-Gutiérrez N, Pevida C, Mohamed Chahbani H (2018) Preparation and evaluation of a coconut shell-based activated carbon for CO2/CH4 separation. Energies 11(7):1748. https://doi.org/10.3390/en11071748

    Article  Google Scholar 

  48. Vallejos ME, Kruyeniski J, Area MC (2017) Second-generation bioethanol from industrial wood waste of South American species. Biofuel Res J 15(2017):654–667. https://doi.org/10.18331/BRJ2017.4.3.4

    Article  Google Scholar 

  49. Bui NQ, Fongarland P, Rataboul F, Dartiguelongue C, Charon N, Vallee C, Essayem N (2018) Controlled pinewood fractionation with supercritical ethanol: a prerequisite toward pinewood conversion into chemicals and biofuels. C R Chim 21(6):555–562. https://doi.org/10.1016/j.crci.2018.03.008

    Article  Google Scholar 

  50. Orémusová E, Tereňová L, Réh R (2014) Evaluation of the gross and net calorific value of the selected wood species. Adv Mater Res 1001:292–299. https://doi.org/10.4028/www.scientific.net/amr.1001.292

    Article  Google Scholar 

  51. Ioelovich M, Morag E (2012) Study of enzymatic hydrolysis of pretreated biomass at increased solids loading. BioResources 7(4):4672–4682. https://doi.org/10.15376/biores.7.4.4672-4682

  52. Gallego LJ, Escobar A, Peñuela M, Peña JD, Rios LA (2015) King Grass: a promising material for the production of second-generation butanol. Fuel 143:399–403. https://doi.org/10.1016/j.fuel.2014.11.077

    Article  Google Scholar 

  53. Teng H, Li S, Lv Q (2011) Experimental study on agglomeration characteristics of king-grass combustion in fluidized bed. Renew Energy Resour 29:121–124 (in Chinese)

    Google Scholar 

  54. Mensah MB, Jumpah H, Boadi NO, Awudza JAM (2021) Assessment of quantities and composition of corn stover in Ghana and their conversion into bioethanol. Scientific African 12(2021):e00731. https://doi.org/10.1016/j.sciaf.2021.e00731

    Article  Google Scholar 

  55. Santos LRO, Varanda LD, Hansted ALS, Da Róz A, Yamamoto H, Yamaji FM (2019) Different types of lignocellulosic materials for energy generation in the ceramic industry. Floresta Ambiente 26(Spec No 2):e20180440. https://doi.org/10.1590/2179-8087.044018

    Article  Google Scholar 

  56. Rizal WA, Nisa’ K, Maryana R, J Prasetyo D, Pratiwi D, Jatmiko TH, Ariani D, Suwanto A (2020) Chemical composition of liquid smoke from coconut shell waste produced by SME in Rongkop Gunungkidul. IOP Conf Ser: Earth Environ Sci 462 012057. https://doi.org/10.1088/1755-1315/462/1/012057

  57. Said M, John G, Mhilu C, Manyele S (2015) The study of kinetic properties and analytical pyrolysis of coconut shells. J Renew Energy. https://doi.org/10.1155/2015/30732

    Article  Google Scholar 

  58. Milian-Luperón L, Hernández-Rodríguez M, Falcón-Hernández J, Otero-Calvis A (2020) Obtaining bioproducts by slow pyrolysis of coffee and cocoa husks as suitable candidates for being used as soil amendment and source of energy. https://doi.org/10.15446/rev.colomb.quim.v49n2.83231

  59. Lubwama M, Yiga VA (2018) Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda. Renew Energy 118:43–55. https://doi.org/10.1016/j.renene.2017.11.003

    Article  Google Scholar 

  60. Pach M, Zanzi R, Björnbom E (2002) “Torrefied biomass a substitute for wood and charcoal,” In: Proceedings of 6th Asia-Pacific International Symposium on Combustion and Energy Utilization, Kuala Lumpur

  61. Ascough PL, Bird MI, Scott AC, Collinson ME, Cohen-Ofri I, Snape CE, Le Manquais K (2010) Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration. J Archaeol Sci 37(7):1590–1599

    Article  Google Scholar 

  62. Anukam AI, Goso BP, Okoh OO, Mamphweli SN (2017) Studies on characterization of corn cob for application in a gasification process for energy production. J Chem 2017, 6478389, 9. https://doi.org/10.1155/2017/6478389

Download references

Acknowledgements

U.S.E. is grateful for the PAMI fellowship at the African University of Science and Technology; Abuja. M.G.P. acknowledges support from the Ramon y Cajal Programme (RYC-2015-17516) of the Government of Spain, cofinanced by the European Social Fund.

Funding

This research was partially supported by the Ramon y Cajal Programme (grant number: RyC-2015–17516) of the Government of Spain, co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Contributions

USE: manuscript writing, conceptualisation, and data analysis. BNE: graph analysis and manuscript review and editing. MGP: characterisations and manuscript review and editing. END: characterisations. KF: manuscript review and editing. LEKA: manuscript review, editing, and general supervision. APO: manuscript review, editing, and general supervision.

Corresponding author

Correspondence to Uchechukwu Stella Ezealigo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Ficus benjamina fruits biomass waste is morphologically porous

• It is eco-friendly with low sulphur and nitrogen contents

• The higher heating value is comparable to wood dust and switchgrass

• These fruits have potential for solid biofuel and other applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezealigo, U.S., Ezealigo, B.N., Plaza, M.G. et al. Preliminary characterisation and valorisation of Ficus benjamina fruits for biofuel application. Biomass Conv. Bioref. 13, 12643–12654 (2023). https://doi.org/10.1007/s13399-021-02230-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02230-1

Keywords

Navigation