Skip to main content
Log in

Enhancement of methane production from anaerobic digestion using different manganese species

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The enhancement of methane (CH4) production by metal addition during anaerobic digestion (AD) of organic waste has drawn much attention in recent years. In this study, four different forms of manganese (Mn, MnO, Mn2O3, and MnO2) were applied at the beginning of AD to investigate their effects on CH4 production. Results suggested that both Mn and the three manganese oxides accelerated CH4 generation. Mn and MnO showed thehigheset carbon conversion rates (about 67%) but the Mn group generated more CH4 (330 mL g−1 VS) than MnO. Moreover, the duration of lag phases for CH4 production was in the following order: MnO < Mn < MnO2 < Mn2O3. Promotion effect of manganese on AD process was found to be the result of a composite overlay: (1) initial valence of manganese (IVM) was more likely to impact on bacteria than archaea, and high IVM could be toxic to most bacteria, (2) a high Mn2+ concentration will be unfavorable to interspecies electron transfer, and the toxicity of Mn2+ to some dominated archaea (e.g. genus Methanosarcina) could improve the competitiveness of other archaea, thereby improved the biodiversity of the archaea.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Source data for Figs. 5a–c and 6a–c have been provided in Supplementary Tables 1 and 2. All other data supporting the findings of this study are available from the corresponding author on request.

Code availability

Not applicable.

References

  1. Qiu L, Deng YF, Wang F, Davaritouchaee M, Yao YQ (2019) A review on biochar-mediated anaerobic digestion with enhanced methane recovery. Renew Sust Energ Rev 115:109373. https://doi.org/10.1016/j.rser.2019.109373

    Article  Google Scholar 

  2. Yuan T, Shi X, Sun R, Ko JH, Xu Q (2021) Simultaneous addition of biochar and zero-valent iron to improve food waste anaerobic digestion. J Clean Prod 278:123627. https://doi.org/10.1016/j.jclepro.2020.123627

    Article  Google Scholar 

  3. Li Y, Jin Y, Borrion A, Li H (2019) Current status of food waste generation and management in China. Biores Technol 273:654–665. https://doi.org/10.1016/j.biortech.2018.10.083

    Article  Google Scholar 

  4. Yuan T, Ko JH, Zhou L, Gao X, Liu Y, Shi X, Xu Q (2020) Iron oxide alleviates acids stress by facilitating syntrophic metabolism between Syntrophomonas and methanogens. Chemosphere 247:125866. https://doi.org/10.1016/j.chemosphere.2020.125866

    Article  Google Scholar 

  5. Lim EY, Tian H, Chen Y, Ni K, Zhang J, Tong YW (2020) Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar. Biores Technol 314:123751. https://doi.org/10.1016/j.biortech.2020.123751

    Article  Google Scholar 

  6. Ko JH, Wang N, Yuan T, Lü F, He P, Xu Q (2018) Effect of nickel-containing activated carbon on food waste anaerobic digestion. Biores Technol 266:516–523. https://doi.org/10.1016/j.biortech.2018.07.015

    Article  Google Scholar 

  7. Ye M, Liu J, Ma C, Li Y, Zou L, Qian G, Xu ZP (2018) Improving the stability and efficiency of anaerobic digestion of food waste using additives: a critical review. J Clean Prod 192:316–326. https://doi.org/10.1016/j.jclepro.2018.04.244

    Article  Google Scholar 

  8. Kong X, Yu S, Xu S, Fang W, Liu J, Li H (2018) Effect of Fe0 addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates. Waste Manage 71:719–727. https://doi.org/10.1016/j.wasman.2017.03.019

    Article  Google Scholar 

  9. Chen JL, Steele TWJ, Stuckey DC (2016) Stimulation and inhibition of anaerobic digestion by nickel and cobalt: a rapid assessment using the resazurin reduction assay. Environ Sci Technol 50:11154–11163. https://doi.org/10.1021/acs.est.6b03522

    Article  Google Scholar 

  10. Zhang M, Fan Z, Hu Z, Luo X (2021) Enhanced anaerobic digestion with the addition of chelator-nickel complexes to improve nickel bioavailability. Sci Total Environ 759:143458. https://doi.org/10.1016/j.scitotenv.2020.143458

    Article  Google Scholar 

  11. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  12. Baek G, Kim J, Lee C (2019) A review of the effects of iron compounds on methanogenesis in anaerobic environments. Renew Sust Energ Rev 113:109282. https://doi.org/10.1016/j.rser.2019.109282

    Article  Google Scholar 

  13. Zhao Z, Zhang Y, Li Y, Quan X, Zhao Z (2018) Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion. Water Res 144:126–133. https://doi.org/10.1016/j.watres.2018.07.028

    Article  Google Scholar 

  14. Jing Y, Wan J, Angelidaki I, Zhang S, Luo G (2017) ITRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite. Water Res 108:212–221. https://doi.org/10.1016/j.watres.2016.10.077

    Article  Google Scholar 

  15. Wang G, Li Q, Gao X, Wang XC (2018) Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms. Biores Technol 250:812–820. https://doi.org/10.1016/j.biortech.2017.12.004

    Article  Google Scholar 

  16. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2017) Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energ Convers Manage 141:108–119. https://doi.org/10.1016/j.enconman.2016.05.051

    Article  Google Scholar 

  17. Oleszkiewicz JA, Sharma VK (1990) Stimulation and inhibition of anaerobic processes by heavy-metals—a review. Biol Wastes 31:45–67. https://doi.org/10.1016/0269-7483(90)90043-R

    Article  Google Scholar 

  18. Yu H, Leadbetter JR (2020) Bacterial chemolithoautotrophy via manganese oxidation. Nature 583:453–458. https://doi.org/10.1038/s41586-020-2468-5

    Article  Google Scholar 

  19. Yang B, Xu H, Liu Y, Li F, Song X, Wang Z, Sand W (2020) Role of GAC-MnO2 catalyst for triggering the extracellular electron transfer and boosting CH4 production in syntrophic methanogenesis. Chem Eng J 383:123211. https://doi.org/10.1016/j.cej.2019.123211

    Article  Google Scholar 

  20. Cai Y, Wang J, Zhao Y, Zhao X, Zheng Z, Wen B, Cui Z, Wang X (2018) A new perspective of using sequential extraction: to predict the deficiency of trace elements during anaerobic digestion. Water Res 140:335–343. https://doi.org/10.1016/j.watres.2018.04.047

    Article  Google Scholar 

  21. Cai Y, Hua B, Gao L, Hu Y, Yuan X, Cui Z, Zhu W, Wang X (2017) Effects of adding trace elements on rice straw anaerobic mono-digestion: focus on changes in microbial communities using high-throughput sequencing. Biores Technol 239:454–463. https://doi.org/10.1016/j.biortech.2017.04.071

    Article  Google Scholar 

  22. Pham MT, Ketheesan B, Yan Z, Stuckey DC (2016) Trace metal speciation and bioavailability in anaerobic digestion: a review. Biotechnol Adv 34:122–136. https://doi.org/10.1016/j.biotechadv.2015.12.006

    Article  Google Scholar 

  23. Tian T, Qiao S, Yu C, Tian Y, Yang Y, Zhou J (2017) Distinct and diverse anaerobic respiration of methanogenic community in response to MnO2 nanoparticles in anaerobic digester sludge. Water Res 123:206–215. https://doi.org/10.1016/j.watres.2017.06.066

    Article  Google Scholar 

  24. Cai Y, Zheng Z, Zhao Y, Zhang Y, Guo S, Cui Z, Wang X (2018) Effects of molybdenum, selenium and manganese supplementation on the performance of anaerobic digestion and the characteristics of bacterial community in acidogenic stage. Biores Technol 266:166–175. https://doi.org/10.1016/j.biortech.2018.06.061

    Article  Google Scholar 

  25. American Public Health Association (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  26. Qiao S, Tian T, Qi B, Zhou J (2015) Methanogenesis from wastewater stimulated by addition of elemental manganese. Sci Rep-Uk 5:12732. https://doi.org/10.1038/srep12732

    Article  Google Scholar 

  27. Wang T, Zhu G, Li C, Zhou M, Wang R, Li J (2020) Anaerobic digestion of sludge filtrate using anaerobic baffled reactor assisted by symbionts of short chain fatty acid-oxidation syntrophs and exoelectrogens: pilot-scale verification. Water Res 170:115329. https://doi.org/10.1016/j.watres.2019.115329

    Article  Google Scholar 

  28. Zhang M, Yang C, Jing Y, Li J (2016) Effect of energy grass on methane production and heavy metal fractionation during anaerobic digestion of sewage sludge. Waste Manage 58:316–323. https://doi.org/10.1016/j.wasman.2016.09.040

    Article  Google Scholar 

  29. Feng Y, Zhang Y, Quan X, Chen S (2014) Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res 52:242–250. https://doi.org/10.1016/j.watres.2013.10.072

    Article  Google Scholar 

  30. Yuan T, Bian S, Ko JH, Wu H, Xu Q (2019) Enhancement of hydrogen production using untreated inoculum in two-stage food waste digestion. Biores Technol 282:189–196. https://doi.org/10.1016/j.biortech.2019.03.020

    Article  Google Scholar 

  31. Wang N, Yuan T, Ko JH, Shi X, Xu Q (2020) Enhanced syntrophic metabolism of propionate and butyrate via nickel-containing activated carbon during anaerobic digestion. J Mater Cycles Waste 22:1529–1538. https://doi.org/10.1007/s10163-020-01037-y

    Article  Google Scholar 

  32. Cerrillo M, Viñas M, Bonmatí A (2018) Anaerobic digestion and electromethanogenic microbial electrolysis cell integrated system: increased stability and recovery of ammonia and methane. Renew Energ 120:178–189. https://doi.org/10.1016/j.renene.2017.12.062

    Article  Google Scholar 

  33. Wei J, Hao X, van Loosdrecht MCM, Li J (2018) Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: a review. Renew Sust Energ Rev 89:16–26. https://doi.org/10.1016/j.rser.2018.02.042

    Article  Google Scholar 

  34. Choong YY, Norli I, Abdullah AZ, Yhaya MF (2016) Impacts of trace element supplementation on the performance of anaerobic digestion process: a critical review. Biores Technol 209:369–379. https://doi.org/10.1016/j.biortech.2016.03.028

    Article  Google Scholar 

  35. Ren S, Usman M, Tsang DCW, O-Thong S, Angelidaki I, Zhu X, Zhang S, Luo G (2020) Hydrochar-facilitated anaerobic digestion: evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups. Environ Sci Technol 54:5755–5766. https://doi.org/10.1021/acs.est.0c00112

    Article  Google Scholar 

  36. Zhang Q, Wang M, Ma X, Gao Q, Wang T, Shi X, Zhou J, Zuo J, Yang Y (2019) High variations of methanogenic microorganisms drive full-scale anaerobic digestion process. Environ Int 126:543–551. https://doi.org/10.1016/j.envint.2019.03.005

    Article  Google Scholar 

  37. Zhang L, Loh K (2019) Synergistic effect of activated carbon and encapsulated trace element additive on methane production from anaerobic digestion of food wastes—enhanced operation stability and balanced trace nutrition. Biores Technol 278:108–115. https://doi.org/10.1016/j.biortech.2019.01.073

    Article  Google Scholar 

  38. Wang T, Zhang D, Dai L, Dong B, Dai X (2018) Magnetite triggering enhanced direct interspecies electron transfer: a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge. Environ Sci Technol 52:7160–7169. https://doi.org/10.1021/acs.est.8b00891

    Article  Google Scholar 

  39. Zhou J, You X, Niu B, Yang X, Gong L, Zhou Y, Wang J, Zhang H (2020) Enhancement of methanogenic activity in anaerobic digestion of high solids sludge by nano zero-valent iron. Sci Total Environ 703:135532. https://doi.org/10.1016/j.scitotenv.2019.135532

    Article  Google Scholar 

  40. Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1:1617012. https://doi.org/10.1038/NMICROBIOL.2016.170

    Article  Google Scholar 

  41. Peng W, Lü F, Duan H, Zhang H, Shao L, He P (2021) Biological denitrification potential as an indicator for measuring digestate stability. Sci Total Environ 752:142211. https://doi.org/10.1016/j.scitotenv.2020.142211

    Article  Google Scholar 

  42. Jolliffe IT (2002) Principal component analysis. Springer-Verlag, New York, p 487

    MATH  Google Scholar 

  43. Souli I, Liu X, Lendormi T, Chaira N, Ferchichi A, Lanoiselle J (2020) Anaerobic digestion of waste tunisian date (Phoenix dactylifera L.): effect of biochemical composition of pulp and seeds from six varieties. Environ Technol. https://doi.org/10.1080/09593330.2020.1797900

    Article  Google Scholar 

  44. Wang D, Han H, Han Y, Li K, Zhu H (2017) Enhanced treatment of Fischer–Tropsch (F–T) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system: effect of electric field. Biores Technol 232:18–26. https://doi.org/10.1016/j.biortech.2017.02.010

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Shenzhen Municipal Government, and the staff and postgraduate students at Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials.

Funding

This research was financially supported by the National Key R&D Program of China (Grant No. 2018YFC1902903) and Shenzhen Science and Technology Innovation Commission (Grant No. JCYJ20170818085908074).

Author information

Authors and Affiliations

Authors

Contributions

QC: Formal analysis, Investigation, Resources, Writing original draft. NW: Data curation and Methodology. DH: Writing—review & editing. TY: Conceptualization and Validation. HW: Funding acquisition. QX: Project administration and supervision.

Corresponding author

Correspondence to Qiyong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 2 kb)

Supplementary file2 (XLS 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wang, N., Huang, D. et al. Enhancement of methane production from anaerobic digestion using different manganese species. Biomass Conv. Bioref. 13, 9783–9793 (2023). https://doi.org/10.1007/s13399-021-01839-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01839-6

Keywords

Navigation