Skip to main content
Log in

Higher bacterial diversity in two-phase thermophilic anaerobic digestion of food waste after micronutrient supplementation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Deficiency of trace metals exacerbates instability in the methanogenic phase of two-phase thermophilic AD. The addition of a micronutrient supplement containing calcium, magnesium, cobalt and nickel was found to help process recovery, increasing methane production by up to 40%. In this study, next gen sequencing was used to identify the changes brought by addition of the micronutrients in the bacterial community of the methanogenic phase of food waste processing. The diversity of the community before supplementation was considerably low and a single species of Phylum Thermotogae was the sole dominant bacterial group. The addition of a micronutrient supplement comprising of Ca, Mg, Co and Ni caused a potent increase in the diversity of the community and species belonging to Arcobacter, Clostridium, Pseudomonas, Bacteroides and Coprothermobacter were particularly enriched. This suggested that the action of the micronutrients resulted in an increase in the functional diversity and redundancy of the bacterial community and limiting hydrogenotrophic methanogenesis in favour of acetotrophic methanogenesis. These factors would contribute to the observed increased stability and higher productivity in the micronutrient supplemented thermophilic AD process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rajoo KS, Karam DS, Ismail A, Arifin A (2020) Evaluating the leachate contamination impact of landfills and open dumpsites from developing countries using the proposed Leachate Pollution Index for Developing Countries (LPIDC). Environ Nanotechnol Monit Manag 14:100372

    Google Scholar 

  2. Vasco-Correa J, Khanal S, Manandhar A, Shah A (2018) Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Bioresource Technol 247:1015–1026

    Article  Google Scholar 

  3. Menon A, Lyng (2020) Circular bioeconomy solutions: driving anaerobic digestion of waste streams towards production of high value medium chain fatty acids. Rev Environ Sci Bio in press

  4. Fuess LT, Kiyuna LSM, Júnior ADNF, Persinoti GF, Squina FM, Garcia ML, Zaiat M (2017) Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energ 189:480–491

    Article  Google Scholar 

  5. Alavi-Borazjani SA, Capela I, Tarelho LA (2020) Over-acidification control strategies for enhanced biogas production from anaerobic digestion: a review. Biomass Bioenerg 143:105833

    Article  Google Scholar 

  6. Kleyböcker A, Liebrich M, Verstraete W, Kraume M, Würdemann H (2012) Early warning indicators for process failure due to organic overloading by rapeseed oil in one-stage continuously stirred tank reactor, sewage sludge and waste digesters. Bioresource Technol 123:534–541

    Article  Google Scholar 

  7. David A, Govil T, Tripathi AK, McGeary J, Farrar K, Sani RK (2018) Thermophilic anaerobic digestion: enhanced and sustainable methane production from co-digestion of food and lignocellulosic wastes. Energies 11:2058

    Article  Google Scholar 

  8. Menon A, Wang JY, Giannis A (2017) Optimization of micronutrient supplement for enhancing biogas production from food waste in two-phase thermophilic anaerobic digestion. Waste Manage 59:465–475

    Article  Google Scholar 

  9. Yılmaz S, Sahan T (2020) Utilization of pumice for improving biogas production from poultry manure by anaerobic digestion: a modeling and process optimization study using response surface methodology. Biomass Bioenerg 138:1056601

    Article  Google Scholar 

  10. Li W, Guo J, Cheng H, Wang W, Dong R (2017) Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: viability, performance and microbial community evaluation. Appl Energ 189:613–622

    Article  Google Scholar 

  11. Abdelsalam E, Samer M, Attia Y, Abdel-Hadi M, Hassan H, Badr Y (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energ 87:592–598

    Article  Google Scholar 

  12. Raskin L, Poulsen LK, Noguera DR, Rittmann BE, Stahl DA (1994) Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Appl Environ Microb 60:1241–1248

    Article  Google Scholar 

  13. Yu D, Kurola J, Lähde K, Kymäläinen M, Sinkkonen A, Romantschuk M (2014) Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. J Environ Manage 143:54–60

    Article  Google Scholar 

  14. Kim E, Lee J, Han G, Hwang S (2018) Comprehensive analysis of microbial communities in full-scale mesophilic and thermophilic anaerobic digesters treating food waste-recycling wastewater. Bioresource Technol 259:442–450

    Article  Google Scholar 

  15. Wintsche B, Glaser K, Sträuber H, Centler F, Liebetrau J, Harms H, Kleinsteuber S (2016) Trace elements induce predominance among methanogenic activity in anaerobic digestion. Front Microbiol 7:2034

    Article  Google Scholar 

  16. Satpathy P, Steinigeweg S, Cypionka H, Engelen B (2016) Different substrates and starter inocula govern microbial community structures in biogas reactors. Environ Technol 37:1441–1450

    Article  Google Scholar 

  17. Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotech 27:55–64

    Article  Google Scholar 

  18. De la Rubia M, Romero L, Sales D, Perez M (2005) Temperature conversion (mesophilic to thermophilic) of municipal sludge digestion. AIChE J 51:2581–2586

    Article  Google Scholar 

  19. Menon A, Ren F, Wang JY, Giannis A (2016) Effect of pretreatment techniques on food waste solubilization and biogas production during thermophilic batch anaerobic digestion. J Mater Cycles Waste 18:222–230

    Article  Google Scholar 

  20. Bouskova A, Dohanyos M, Schmidt JE, Angelidaki I (2005) Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge. Water Res 39:1481–1488

    Article  Google Scholar 

  21. Youcai Z, Tao Z (2021) Simultaneous anaerobic fermentation biohydrogen and biomethane production from food waste. In: Youcai Z, Tao Z (ed), Biohydrogen production and hybrid process development. Elsevier, pp 239–310

  22. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12:385

    Article  Google Scholar 

  23. Zannoni D, De Philippis R (2014) Microbial bioenergy: hydrogen production. Springer

  24. Verhaart MR, Bielen AA, Oost JVD, Stams AJ, Kengen SW (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 31:993–1003

    Article  Google Scholar 

  25. Bonch‐Osmolovskaya E (2008) Thermotogales, eLS

  26. Omar B, El-Gammal M, Abou-Shanab R, Fotidis IA, Angelidaki I, Zhang Y (2019) Biogas upgrading and biochemical production from gas fermentation: impact of microbial community and gas composition. Bioresource Technol 286:121413

    Article  Google Scholar 

  27. Cerrillo M, Viñas M, Bonmatí A (2016) Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell. Bioresource Technol 216:362–372

    Article  Google Scholar 

  28. Labatut RA, Angenent LT, Scott NR (2014) Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water Res 53:249–258

    Article  Google Scholar 

  29. Kim M, Ahn YH, Speece R (2002) Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res 36:4369–4385

    Article  Google Scholar 

  30. Moset V, Poulsen M, Wahid R, Højberg O, Møller HB (2015) Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microb Biotechnol 8:787–800

    Article  Google Scholar 

  31. Sierocinski P, Bayer F, Yvon-Durocher G, Burdon M, Großkopf T, Alston M, Swarbreck D, Hobbs PJ, Soyer OS, Buckling A (2018) Biodiversity-function relationships in methanogenic communities. Mol Ecol 27:4641–4651

    Article  Google Scholar 

  32. Ferry JG (2012) Methanogenesis: ecology, physiology, biochemistry & genetics. Springer Science & Business Media

  33. Großkopf T, Soyer OS (2016) Microbial diversity arising from thermodynamic constraints. ISME J 10:2725–2733

    Article  Google Scholar 

  34. Gomez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma M, McElroy K, Buckling A (2016) Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun 7:1–8

    Article  Google Scholar 

  35. Li X, Wu S, Shen Y, Ning Y, Zhang X, Sun X, Zhang B, Chen J (2015) Heterotrophic nitrification and aerobic denitrification by four novel isolated bacteria. Pol J Environ Stud 24:1677–1682

    Article  Google Scholar 

  36. Kunath BJ, Delogu F, Naas AE, Arntzen MØ, Eijsink VG, Henrissat B, Hvidsten TR, Pope PB (2019) From proteins to polysaccharides: lifestyle and genetic evolution of Coprothermobacter proteolyticus. ISME J 13:603–617

    Article  Google Scholar 

  37. Sasaki K, Morita M, Sasaki D, Nagaoka J, Matsumoto N, Ohmura N, Shinozaki H (2011) Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J Biosci Bioeng 112:469–472

    Article  Google Scholar 

  38. Palatsi J, Viñas M, Guivernau M, Fernandez B, Flotats X (2011) Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresource Technol 102:2219–2227

    Article  Google Scholar 

  39. Tandishabo K, Nakamura K, Umetsu K, Takamizawa K (2012) Distribution and role of Coprothermobacter spp. in anaerobic digesters. J Biosci Bioeng 114:518–520

    Article  Google Scholar 

  40. Meslé M, Dromart G, Haeseler F, Oger PM (2015) Classes of organic molecules targeted by a methanogenic microbial consortium grown on sedimentary rocks of various maturities. Front Microbiol 6:589

    Google Scholar 

  41. De Vrieze J, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresource Technol 112:1–9

    Article  Google Scholar 

  42. Pobeheim H, Munk B, Lindorfer H, Guebitz GM (2011) Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Res 45:781–787

    Article  Google Scholar 

  43. Kim J, Shin SG, Han G, O’Flaherty V, Lee C, Hwang S (2011) Common key acidogen populations in anaerobic reactors treating different wastewaters: molecular identification and quantitative monitoring. Water Res 45:2539–2549

    Article  Google Scholar 

  44. Yang Y, Tsukahara K, Sawayama S (2008) Biodegradation and methane production from glycerol-containing synthetic wastes with fixed-bed bioreactor under mesophilic and thermophilic anaerobic conditions. Process Biochem 43:362–367

    Article  Google Scholar 

  45. Chang M, Wang Y, Pan Y, Zhang K, Lyu L, Wang M, Zhu T (2019) Nitrogen removal from wastewater via simultaneous nitrification and denitrification using a biological folded non-aerated filter. Bioresource Technol 289:121696

    Article  Google Scholar 

  46. Vandieken V, Pester M, Finke N, Hyun JH, Friedrich MW, Loy A, Thamdrup B (2012) Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. ISME J 6:2078–2090

    Article  Google Scholar 

  47. Dyksma S, Jansen L, Gallert C (2020) Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome 8:1–14

    Article  Google Scholar 

  48. Narihiro T, Nobu MK, Kim NK, KamagataY LWT (2015) The nexus of syntrophy-associated microbiota in anaerobic digestion revealed by long-term enrichment and community survey. Environ Microbiol 17:1707–1720

    Article  Google Scholar 

  49. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100

    Article  Google Scholar 

  50. Fotidis I, Karakashev D, Angelidaki I (2014) The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels. Int J Environ Sci Te 11:2087–2094

    Article  Google Scholar 

  51. Rajagopal R, Massé DI, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technol 143:632–641

    Article  Google Scholar 

  52. Müller B, Sun L, Westerholm M, Schnürer A (2016) Bacterial community composition and fhs profiles of low-and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria. Biotechnol Biofuels 9:1–18

    Article  Google Scholar 

  53. Xu R, Zhang K, Liu P, Khan A, Xiong J, Tian F, Li X (2018) A critical review on the interaction of substrate nutrient balance and microbial community structure and function in anaerobic co-digestion. Bioresource Technol 247:1119–1127

    Article  Google Scholar 

  54. Romero-Güiza M, Vila J, Mata-Alvarez J, Chimenos J, Astals S (2016) The role of additives on anaerobic digestion: a review. Renew Sust Energ Rev 58:1486–1499

    Article  Google Scholar 

  55. Ryue J, Lin L, Kakar FL, Elbeshbishy E, Al-Mamun A, Dhar BR (2020) A critical review of conventional and emerging methods for improving process stability in thermophilic anaerobic digestion. Energ Sust Develop 54:72–84

    Article  Google Scholar 

  56. Ghanimeh S, El-Fadel M, Saikaly PE (2018) Performance of thermophilic anaerobic digesters using inoculum mixes with enhanced methanogenic diversity. J Chem Technol Biot 93:207–214

    Article  Google Scholar 

  57. Schmidt J, Ahring B (1993) Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors. Enzyme Microb Tech 15:304–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Giannis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menon, A., Lyng, J. & Giannis, A. Higher bacterial diversity in two-phase thermophilic anaerobic digestion of food waste after micronutrient supplementation. Biomass Conv. Bioref. 13, 5187–5195 (2023). https://doi.org/10.1007/s13399-021-01704-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01704-6

Keywords

Navigation