Skip to main content

Advertisement

Log in

Liquid nitrogen-controlled direct pyrolysis/KOH activation mediated micro-mesoporous carbon synthesis from castor shell for enhanced performance of supercapacitor electrode

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Direct pyrolysis/KOH activation of carbon from castor shell biomass is an economical combination of two processes to breakdown biomass lignin effectively. The advanced liquid nitrogen-controlled direct pyrolysis/KOH activation technique is even a shortened process, which optimizes the fugacious bond reformation for enhancing supercapacitors’ performance. Novel quenching of the red-hot activated carbon (heated at 800 °C) in liquid nitrogen is peculiar to the demonstrated structural changes. The desired throughput designated nKAC exhibited a high specific surface area of 1468 m2 g−1 over the initial 1131 m2 g−1 for KAC. In 6 M KOH electrolyte, the nKAC electrode exhibited a high specific capacitance of 481 F g−1 at 1 A g−1 and an excellent rate capability of 298 F g−1 at 30 A g−1. In symmetric two electrodes test, the electrodes of nKAC show a high energy density of 17.75 Wh kg−1 at 0.5 A g−1 in 1 M Na2SO4 electrolyte compared with 14.75 Wh kg−1 of KAC electrodes. Furthermore, the nKAC still maintained a high energy density of 12.4 Wh kg−1 at 5.0 A g−1 corresponding to a high power density of 4500 W kg−1. This simple and green method has potential applications in the synthesis of porous carbon based on waste biomass for enhancing performance of electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Xiaohua Z, Kang Z, Hengxiang L, Qing C, Li’e J, Ping L (2017) Porous graphitic carbon microtubes derived from willow catkins as a substrate of MnO2 for supercapacitors. J Power Sources 344:176–184. https://doi.org/10.1016/j.jpowsour.2017.01.107

    Article  Google Scholar 

  2. Yunfei S, Jiaying L, Shizhe B, Da W, Baizhan L, Yun L (2015) Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO2 capture. Mater Res Bull 64:327–332. https://doi.org/10.1016/j.materresbull.2015.01.015

    Article  Google Scholar 

  3. Mathieu M, Sébastien P, Mehrdji H, Yilmaz K (2016) Pyrolysis of biomass in a batch fluidized bed reactor: effect of the pyrolysis conditions and the nature of the biomass on the physicochemical properties and the reactivity of char. J Anal Appl Pyrolysis 122:511–523. https://doi.org/10.1016/j.jaap.2016.10.002

    Article  Google Scholar 

  4. Keliang W, Ming X, Zhengrong G, Phil A, Joun L, William G, Jason C, Qihua F (2016) Pyrrole modified biomass derived hierarchical porous carbon as high performance symmetrical supercapacitor electrodes. Int J Hydrog Energy 41:13109–13115. https://doi.org/10.1016/j.ijhydene.2016.05.090

    Article  Google Scholar 

  5. Gaoxin L, Ruguang M, Yao Z, Qian L, Xiaoping D, Jiacheng W (2018) KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochim Acta 261:49–57. https://doi.org/10.1016/j.electacta.2017.12.107

    Article  Google Scholar 

  6. Guoxiong Z, Yuemei C, Yigang C, Haibo G (2018) Activated biomass carbon made from bamboo as electrode material for supercapacitors. Mater Res Bull 102:391–398. https://doi.org/10.1016/j.materresbull.2018.03.006

    Article  Google Scholar 

  7. Abdulhakeem B, Ncholu M, Farshad B, Abubakar AK, Damilola YM, Julien KD (2016) Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv 6:1800–1809. https://doi.org/10.1039/c5ra21708c

    Article  Google Scholar 

  8. Yuan G, Wenli Z, Qinyan Y, Baoyu G, Yuanyuan S, Jiaojiao K, Pin Z (2014) Simple synthesis of hierarchical porous carbon from Enteromorpha prolifera by a self-template method for supercapacitor electrodes. J Power Sources 270:403–410. https://doi.org/10.1016/j.jpowsour.2014.07.115

    Article  Google Scholar 

  9. Jiacheng W, Stefan K (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725. https://doi.org/10.1039/c2jm34066f

    Article  Google Scholar 

  10. Yan W, Jing-Pei C, Xiao-Yan Z, Zhi-Qiang H, Qi-Qi Z, Jun-Sheng Z, Xing-Yong W, Xian-Yong W (2017) Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor. Electrochim Acta 252:397–407. https://doi.org/10.1016/j.electacta.2017.08.176

    Article  Google Scholar 

  11. Xiao-Li S, Ming-Yu C, Lin F, Jing-He Y, Xiu-Cheng Z, Xin-Xin G (2017) Superior supercapacitive performance of hollow activated carbon nanomesh with hierarchical structure derived from poplar catkins. J Power Sources 362:27–38. https://doi.org/10.1016/j.jpowsour.2017.07.021

    Article  Google Scholar 

  12. Qiang L, Rongrong J, Yuqian D, Zhangxiong W, Tao H, Dan F, Jianping Y, Aishui Y, Dongyuan Z (2011) Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49:1248–1257. https://doi.org/10.1016/j.carbon.2010.11.043

    Article  Google Scholar 

  13. Cheng BH, Zeng RJ, Jiang H (2017) Recent developments of post-modification of biochar for electrochemical energy storage. Bioresour Technol 246:224–233. https://doi.org/10.1016/j.biortech.2017.07.060

    Article  Google Scholar 

  14. Ma C, Chen X, Long D, Wang J, Qiao W, Ling L (2017) High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor. Carbon. 118:699–708. https://doi.org/10.1016/j.carbon.2017.03.075

    Article  Google Scholar 

  15. Xu Z, Wang J, Hu Z, Geng R, Gan L (2017) Structure evolutions and high electrochemical performances of carbon aerogels prepared from the pyrolysis of phenolic resin gels containing ZnCl2. Electrochim Acta 231:601–608. https://doi.org/10.1016/j.electacta.2016.12.179

    Article  Google Scholar 

  16. Dai C, Wan J, Yang J, Qu S, Jin T, Ma F, Shao J (2018) H3PO4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors. Appl Surf Sci 444:105–117. https://doi.org/10.1016/j.apsusc.2018.02.261

    Article  Google Scholar 

  17. Zhao J, Yang B, Yang Z, Zhang P, Zheng Z, Ren W, Yan X (2014) Facile preparation of large-scale graphene nanoscrolls from graphene oxide sheets by cold quenching in liquid nitrogen. Carbon. 79:470–477. https://doi.org/10.1016/j.carbon.2014.08.006

    Article  Google Scholar 

  18. Wang G, Yue F, Zhang L, Yan B, Luo J, Su X (2018) Oxygen vacancy-rich anatase TiO2 hollow spheres via liquid nitrogen quenching process for enhanced photocatalytic hydrogen evolution. Chemcatchem. https://doi.org/10.1002/cctc.201801721

  19. Li J, Zan G, Wu Q (2015) Facile synthesis of hierarchical porous carbon via the liquidoid carbonization method for supercapacitors. New J Chem 39:8165–8171. https://doi.org/10.1039/C5NJ01373A

    Article  Google Scholar 

  20. Wang G, Liang K, Liu L, Yu Y, Hou S, Chen A (2018) Fabrication of monodisperse hollow mesoporous carbon spheres by using “confined nanospace deposition” method for supercapacitor. J Alloys Compd 736:35–41. https://doi.org/10.1016/j.jallcom.2017.11.080

    Article  Google Scholar 

  21. Xu YL, Ren B, Wang SS, Zhang LH, Liu ZF (2018) Carbon aerogel-based supercapacitors modified by hummers oxidation method. J Colloid Interface Sci 527:25–32. https://doi.org/10.1016/j.jcis.2018.04.108

    Article  Google Scholar 

  22. María LNL, Juan MS, Vanina C, Marta D, María AV, Elizabeth LM (2016) Biochar from pyrolysis of cellulose: an alternative catalyst support for the electro-oxidation of methanol. Int J Hydrog Energy 41:10695–10706. https://doi.org/10.1016/j.ijhydene.2016.04.041

    Article  Google Scholar 

  23. Abdullahil K, Asma A, Lindong Z, Hyun CK, Jaehwan K (2017) Porous cellulose/graphene oxide nanocomposite as flexible and renewable electrode material for supercapacitor. Synth Met 223:94–100. https://doi.org/10.1016/j.synthmet.2016.12.010

    Article  Google Scholar 

  24. Hui L, Du Y, Chunhua T, Suxi W, Jiaotong S, Zibiao L, Tao T, Fuke W, Hao G, Chaobin H (2016) Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100:151–157. https://doi.org/10.1016/j.carbon.2015.12.075

    Article  Google Scholar 

  25. Jia H, Sun J, Xie X, Yin K, Sun L (2019) Cicada slough-derived heteroatom incorporated porous carbon for supercapacitor: ultra-high gravimetric capacitance. Carbon. 143:309–317. https://doi.org/10.1016/j.carbon.2018.11.011

    Article  Google Scholar 

  26. Lian YM, Ni M, Zhou L, Chen RJ, Yang W (2018) Synthesis of biomass-derived carbon induced by cellular respiration in yeast for supercapacitor applications. Chemistry. 24:18068–18074. https://doi.org/10.1002/chem.201803836

    Article  Google Scholar 

  27. Qu S, Wan J, Dai C, Jin T, Ma F (2018) Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J Alloys Compd 751:107–116. https://doi.org/10.1016/j.jallcom.2018.04.123

    Article  Google Scholar 

  28. Teo EYL, Muniandy L, Ng E-P, Adam F, Mohamed AR, Jose R, Chong KF (2016) High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim Acta 192:110–119. https://doi.org/10.1016/j.electacta.2016.01.140

    Article  Google Scholar 

  29. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao SZ, Lu GQ (2011) Preparation of capacitor’s electrode from sunflower seed shell. Bioresour Technol 102:1118–1123. https://doi.org/10.1016/j.biortech.2010.08.110

    Article  Google Scholar 

  30. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei BQ (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111:7527–7531. https://doi.org/10.1021/jp067009t

    Article  Google Scholar 

  31. Xiaoguang L, Changde M, Yanliang W, Xuecheng C, Xi Z, Tao T, Rudolf H, Ewa M (2021) Highly efficient conversion of waste plastic into thin carbon nanosheets for superior capacitive energy storage. Carbon 171:819–828. https://doi.org/10.1016/j.carbon.2020.09.057

    Article  Google Scholar 

  32. Xiaoguang L, Yanliang W, Xuecheng C, Anna D, Rafał W, Jiayi Z, Xin W, Zunfeng L, Ewa M (2020) One-step synergistic effect to produce two-dimensional N-doped hierarchical porous carbon nanosheets for high-performance flexible supercapacitors. ACS Appl Energy Mater 3:8562–8572. https://doi.org/10.1021/acsaem.0c01183

    Article  Google Scholar 

  33. Xiaoguang L, Changde M, Jiaxin L, Beata Z, Ryszard JK, Xuecheng C, Paul KC, Tao T, Ewa M (2019) Biomass-derived roboust three-dimentional porous carbon for high volumetric performance supercapacitors. J Power Source 412:1–9. https://doi.org/10.1016/j.jpowsour.2018.11.032

    Article  Google Scholar 

  34. Xu L-L, Guo M-X, Liu S, Bian S-W (2015) Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Adv 5:25244–25249. https://doi.org/10.1039/C4RA16063K

    Article  Google Scholar 

  35. Xu J, Wu C, Yan P, Wang J, Zhang R, Zhang X, Jin J (2015) Enhanced electrochemical performance of graphitized carbide-derived carbon in alkaline electrolyte. Electrochim Acta 174:411–416. https://doi.org/10.1016/j.electacta.2015.06.025

    Article  Google Scholar 

  36. Bandara N, Esparza Y, Wu J (2017) Graphite oxide improves adhesion and water resistance of canola protein-graphite oxide hybrid adhesive. Sci Rep 7:11538. https://doi.org/10.1038/s41598-017-11966-8

    Article  Google Scholar 

  37. Hodgkins SB, Richardson CJ, Dommain R, Wang H, Glaser PH, Verbeke B, Winkler BR, Cobb AR, Rich VI, Missilmani M, Flanagan N, Ho M, Hoyt AM, Harvey CF, Vining SR, Hough MA, Moore TR, Richard PJH, De La Cruz FB, Toufaily J, Hamdan R, Cooper WT, Chanton JP (2018) Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat Commun 9:3640. https://doi.org/10.1038/s41467-018-06050-2

    Article  Google Scholar 

  38. Xu Z, Li Y, Li D, Wang D, Zhao J, Wang Z, Banis MN, Hu Y, Zhang H (2018) N-enriched multilayered porous carbon derived from natural casings for high-performance supercapacitors. Appl Surf Sci 444:661–671. https://doi.org/10.1016/j.apsusc.2018.03.100

    Article  Google Scholar 

  39. Deng X, Shi W, Zhong Y, Zhou W, Liu M, Shao Z (2018) Facile strategy to low-cost synthesis of hierarchically porous, active carbon of high graphitization for energy storage. ACS Appl Mater Interfaces 10:21573–21581. https://doi.org/10.1021/acsami.8b04733

    Article  Google Scholar 

  40. Kim M, Oh I, Kim J (2016) Hierarchical micro & mesoporous silicon carbide flakes for high-performance electrochemical capacitive energy storage. J Power Source 307:715–723. https://doi.org/10.1016/j.jpowsour.2016.01.038

    Article  Google Scholar 

  41. Han X, Jiang H, Zhou Y, Hong W, Zhou Y, Gao P, Ding R, Liu E (2018) A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria. J Alloys Compd 744:544–551

    Article  Google Scholar 

Download references

Code availability

Not applicable

Funding

This work was supported by the general program of the National Natural Science Foundation of China (No. 21878251). The authors thank the Analysis and Testing Center of Xiamen University for the analysis and observation work in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chika A. Okonkwo or Lishan Jia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okonkwo, C.A., Li, G., Li, Y. et al. Liquid nitrogen-controlled direct pyrolysis/KOH activation mediated micro-mesoporous carbon synthesis from castor shell for enhanced performance of supercapacitor electrode. Biomass Conv. Bioref. 13, 3101–3112 (2023). https://doi.org/10.1007/s13399-021-01356-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01356-6

Keywords

Navigation