Skip to main content
Log in

Efficient hydrogenation of biomass-derived phenol to cyclohexanol over 3D mesoporous silica-supported Ni catalysts in a continuous gas phase conditions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

High surface area three-dimensional (3D-cubic SBA-16) and two-dimensional mesoporous silica (2D-hexagonal SBA-15) supported Ni composities were employed as active catalysts for industrially important cyclohexanol synthesis via phenol hydrogenation. Among synthesised porous materials, Ni/SBA-16 catalysts were dramatically displayed a superior activity compared to Ni/SBA-15 catalysts. It was obviously due to three-dimensional Ni/SBA-16 catalysts were exhibited unusual surface textural properties, like adequate surface area, interconnected-cage type pore structure and thermal stability. Moreover, uniformly distributed smaller size Ni nanoparticles results in efficient utilisation of external H2 source for highest phenol reduction on porous SBA-16 material, compared to SBA-15 catalyst. Hence, 20 (wt.%) Ni/SBA-16 catalyst afforded a remarkable activity in terms of 91% phenol conversion and 79% cyclohexanol yield even after 8-h time-on-stream study. In contrast, 20 (wt.%) Ni/SBA-15 catalyst showed low catalytic activity about 28% phenol conversion and 19% cyclohexanol yield during the 8-h time-on-stream. All synthesized catalysts were characterised by X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), scanning electron microscopy (SEM), BET surface area, transmission electron microscopy (TEM) techniques and inductive coupled plasma-optical emission spectroscopy (ICP-OES).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699. https://doi.org/10.1126/science.1218930

    Article  Google Scholar 

  2. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  Google Scholar 

  3. Li C, Zhao X, Wang HA, Zhang T, Huber GW (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624. https://doi.org/10.1021/acs.chemrev.5b00155

    Article  Google Scholar 

  4. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558. https://doi.org/10.1039/C1CS15147A

    Article  Google Scholar 

  5. Templis CC, Revelas CJ, Papastylianou AA, Papayannakos NG (2019) Phenol hydrodeoxygenation over a reduced and sulfided NiMo/γ-Al2O3 catalyst. Ind Eng Chem Res 58:6278–6287. https://doi.org/10.1021/acs.iecr.8b06465

    Article  Google Scholar 

  6. Guan QQ, Wang B, Chai XS, Liu J, Gu JJ, Ning P (2017) Comparison of Pd-UiO-66 and Pd-UiO-66-NH2 catalysts performance for phenol hydrogenation in aqueous medium Fuel. Fuel 205:130–141. https://doi.org/10.1016/j.fuel.2017.05.029

    Article  Google Scholar 

  7. Zhang Q, Li H, Gao P, Wang L (2014) PVP-NiB amorphous catalyst for selective hydrogenation of phenol and its derivatives. Chin J Catal 35:1793–1799. https://doi.org/10.1016/S1872-2067(14)60203-5

    Article  Google Scholar 

  8. Schwab F, Lucas M, Claus P (2011) Ruthenium catalyzed selective hydrogenation of benzene to cyclohexene in the presence of an ionic liquid. Angew Chem Int Ed 50:10453–10456. https://doi.org/10.1002/anie.201104959

    Article  Google Scholar 

  9. Vispute TP, Huber GW (2009) Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. Green Chem 11:1433–1445. https://doi.org/10.1039/B912522C

    Article  Google Scholar 

  10. Mahfud FH, Ghijsen F, Heeres HJ (2007) Production of hydrogen, alkanes and polyols by aqueous phase processing of wood-derived pyrolysis oils. J Mol Catal A Chem 264:227–236. https://doi.org/10.1016/j.molcata.2006.09.022

    Article  Google Scholar 

  11. Song Z, Ren D, Wang T, Jin F, Jiang Q, Huo Z (2016) Highly selective hydrothermal production of cyclohexanol from biomass-derived cyclohexanone over Cu powder. Catal Today 274:94–98. https://doi.org/10.1016/j.cattod.2015.11.016

    Article  Google Scholar 

  12. Sikhwivhilu LM, Coville NJ, Naresh D, Chary KVR, Vishwanathan V (2007) Nanotubular titanate supported palladium catalysts: the influence of structure and morphology on phenol hydrogenation activity. Appl Catal A Gen 324:52–61. https://doi.org/10.1016/j.apcata.2007.03.004

    Article  Google Scholar 

  13. Yizhi X, Lei M, Chunshan L, Qunfeng Z, Xiaonian L (2008) Aqueous system for the improved hydrogenation of phenol and its derivatives. Green Chem 10:939–943. https://doi.org/10.1039/B803217C

    Article  Google Scholar 

  14. Liu D, Li GF, Yang FF, Wang H, Han JY, Zhu XL, Ge QF (2017) Competition and cooperation of hydrogenation and deoxygenation reactions during hydrodeoxygenation of phenol on Pt (111). J Phys Chem C 121:12249–12260. https://doi.org/10.1021/acs.jpcc.7b03042

    Article  Google Scholar 

  15. Chen H, He YL, Pfefferle LD, Pu WH, Wu YL, Qi ST (2018) Phenol catalytic hydrogenation over palladium nanoparticles supported on metal organic frameworks in the aqueous phase. Chem Cat Chem 10:2558–2570. https://doi.org/10.1002/cctc.201800211

    Article  Google Scholar 

  16. Vinokurov V, Glotov A, Chudakov Y, Stavitskaya A, Ivanov E, Gushchin P, Zolotukhina A, Maximov A, Karakhanov E, Lvov Y (2017) Core/shell ruthenium–halloysite nanocatalysts for hydrogenation of phenol. Ind Eng Chem Res 56:14043–14052. https://doi.org/10.1021/acs.iecr.7b03282

    Article  Google Scholar 

  17. Xu GY, Guo JH, Qu YC, Zhang Y, Fu Y, Guo QX (2016) Selective hydrodeoxygenation of lignin-derived phenols to alkyl cyclohexanols over a Ru-solid base bifunctional catalyst. Green Chem 18:5510–5517. https://doi.org/10.1039/C6GC01097K

    Article  Google Scholar 

  18. Sun J, Karim AM, Zhang H, Kovarik L, Li XS, Hensley AJ (2013) Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J Catal 306:47–57. https://doi.org/10.1016/j.jcat.2013.05.020

    Article  Google Scholar 

  19. Zhao C, Kou Y, Lemonidou AA, Li XB, Lercher JA (2009) Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew Chem Int Ed 48:3987–3990. https://doi.org/10.1002/anie.200900404

    Article  Google Scholar 

  20. Chen Z, Johannes AL (2012) Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts. Chem Cat Chem 4:64–68. https://doi.org/10.1002/cctc.201100273

    Article  Google Scholar 

  21. Liliana G, Marlon BB, Juan Carlos MP (2014) Vapour phase hydrogenation of phenol over rhodium on SBA-15 and SBA-16. Molecules 19:20594–20612. https://doi.org/10.3390/molecules191220594

    Article  Google Scholar 

  22. Jinxing L, Shiyang S, Qingyun W, Zhengqiu Y, Tiejun W, Ying X, Xinghua Z, Qi Z, Longlong M (2015) Selective cyclohexanol production from the renewable lignin derived phenolic chemicals catalysed by Ni/MgO. Energy Convers Manag 105:570–577. https://doi.org/10.1016/j.enconman.2015.08.016

    Article  Google Scholar 

  23. Peter MM, Jan Dierk GB, Peter AJ, Anker DJ (2016) Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2. Catal Today 259:277–284. https://doi.org/10.1016/j.cattod.2015.08.022

    Article  Google Scholar 

  24. Rode CV, Joshi UD, Sato O, Shirai M (2003) Catalytic ring hydrogenation of phenol under supercritical carbon dioxide. Chem Commun 15:1960–1961. https://doi.org/10.1039/B304344D

    Article  Google Scholar 

  25. Peter MM, Jan DG, Peter AP, Anker DJ (2013) Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil. ACS Catal 3:1774–1785. https://doi.org/10.1021/cs400266e

    Article  Google Scholar 

  26. Xiaohao L, Wenda J, Guangyue X, Ying Z, Yao F (2017) Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over co-based catalysts. ACS Sustain Chem Eng 5:8594–8601. https://doi.org/10.1021/acssuschemeng.7b01047

    Article  Google Scholar 

  27. Echeandiaa S, Ariasa PL, Barrioa VL, Pawelecb B, Fierrob JLG (2010) Synergy effect in the HDO of phenol over Ni-W catalysts supported on active carbon: effect of tungsten precursors. Appl Catal B Environ 101:1–12. https://doi.org/10.1016/j.apcatb.2010.08.018

    Article  Google Scholar 

  28. Putra RDD, Trajano HL, Liu S, Lee H, Smith K, Kim CS (2018) In-situ glycerol aqueous phase reforming and phenol hydrogenation over Raney Ni. Chem Eng J 350:181–191. https://doi.org/10.1016/j.cej.2018.05.146

    Article  Google Scholar 

  29. Teles CA, RabeloNeto RC, Jacobs G, Davis BH, Resasco DE, Noronha FB (2017) Hydrodeoxygenation of phenol over zirconia supported catalysts: the effect of metal type on reaction mechanism and catalyst deactivation. Chem Cat Chem 9:2850–2863. https://doi.org/10.1002/cctc.201700047

    Article  Google Scholar 

  30. Li A, Shen K, Chen J, Li Z, Li Y (2017) Highly selective hydrogenation of phenol to cyclohexanol over MOF-derived non-noble Co-Ni@NC catalysts. Chem Eng Sci 166:66–76. https://doi.org/10.1016/j.ces.2017.03.027

    Article  Google Scholar 

  31. Haohong D, Dingsheng W, Yuan K, Yadong L (2013) Rhodium–nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation. Chem Commun 49:303–305. https://doi.org/10.1039/C2CC37668G

    Article  Google Scholar 

  32. Fatih DM, Balat M, Balat H (2011) Biowastes to biofuels. Energy Convers Manag 52:1815–1828. https://doi.org/10.1016/j.enconman.2010.10.041

    Article  Google Scholar 

  33. Bipul S, Chandrashekar P, Sivakumar NLK, Takehiko AS, Rajaram B (2014) Pt nanoparticle supported on nanocrystalline CeO2: highly selective catalyst for upgradation of phenolic derivatives present in bio-oil. J Mater Chem A 2:18398–18404. https://doi.org/10.1039/C4TA04542D

    Article  Google Scholar 

  34. Hea J, Lua XH, Shena Y, Jing R, Niea RF, Zhoua D, Xia QH (2017) Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium. Mol Catal 44:87–95. https://doi.org/10.1016/j.mcat.2017.07.016

    Article  Google Scholar 

  35. Eun JS, Mark AK (2000) Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts. Ind Eng Chem Res 39:883–892. https://doi.org/10.1021/ie990643r

    Article  Google Scholar 

  36. Shenghua H, Mingwei X, Hui C, Jianyi S (2010) The effect of surface acidic and basic properties on the hydrogenation of aromatic rings over the supported nickel catalysts. Chem Eng J 162:371–379. https://doi.org/10.1016/j.cej.2010.05.019

    Article  Google Scholar 

  37. Raffelt K, Henrich E, Koegel A, Stahl R, Steinhardt J, Weirich F (2006) The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Appl Biochem Biotechnol 129:153–164. https://doi.org/10.1385/ABAB:129:1:153

    Article  Google Scholar 

  38. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552. https://doi.org/10.1126/science.279.5350.548

    Article  Google Scholar 

  39. Yang J, Jung WY, Lee GD, Park SS, Jeong ED, Kim HG, Hong S (2008) Catalytic combustion of benzene over metal oxides supported on SBA-15. J Ind Eng Chem 14:779–784. https://doi.org/10.1016/j.jiec.2008.05.008

    Article  Google Scholar 

  40. Ravi Kumar M, Venkata Rao M, Sivarama Krishna L, Marlia MH, Sarala Y (2020) Hydrogen-free hydrogenation of nitrobenzene via direct coupling with cyclohexanol dehydrogenation over ordered mesoporous MgO/SBA-15 supported Cu nanoparticles. RSC Adv 10:38755–38766. https://doi.org/10.1039/D0RA06003H

    Article  Google Scholar 

  41. Grudzien RM, Graicka BE, Jaroniec M (2006) Effective method for removal of polymeric template from SBA-16 silica combining extraction and temperature-controlled calcinations. J Mater Chem 16:819–823. https://doi.org/10.1039/B515975J

    Article  Google Scholar 

  42. Hongchao L, Hua W, Jianghan S, Ying S, Zhongmin L (2008) Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx-free hydrogen from ammonia. Appl Catal A Gen 337:138–147. https://doi.org/10.1016/j.apcata.2007.12.006

    Article  Google Scholar 

  43. Hang S, Muratsugu S, Ishiguro N, Tada M (2013) Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane. ACS Catal 3:1855–1864. https://doi.org/10.1021/cs400159w

    Article  Google Scholar 

  44. Venkata Rao M, Kotesh Kumar M, Venkateshwarlu V, Mohan V, Rama Rao KS, Misook K (2020) Rice husk-derived carbon-silica supported Ni catalysts for selective hydrogenation of biomass-derived furfural and levulinic acid. Fuel 261:116339. https://doi.org/10.1016/j.fuel.2019.116339

    Article  Google Scholar 

  45. Zhicheng B, Xin M, Miao T, YuHao L, Zhong X (2016) Uniform Ni particles on amino-functionalized SBA-16 with excellent activity and stability for syngas methanation. J Mol Catal A Chem 417:184–191. https://doi.org/10.1016/j.molcata.2016.03.028

    Article  Google Scholar 

  46. Suyun H, Sufang H, Lei Z, Xiaofeng L, Jing W, Dedong H, Jichang L, Yongming L (2015) Hydrogen production by ethanol steam reforming over Ni/SBA-15 mesoporous catalysts: effect of Au addition. Catal Today 25:162–168. https://doi.org/10.1016/j.cattod.2015.04.031

    Article  Google Scholar 

  47. Mohan V, Venkateshwarlu V, Saidulu G, David Raju B, Rama Rao KS (2015) Ni nanoparticles supported on mesoporous silica (2D, 3D) architectures: highly efficient catalysts for the hydrocyclization of biomass-derived levulinic acid. RSC Adv 5:57201–57210. https://doi.org/10.1039/C5RA10857H

    Article  Google Scholar 

  48. Wu C, Wang L, Williamms PT, Shi J, Huang (2011) Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: influence of Ni content. J Appl Catal B Environ 109:108–113. https://doi.org/10.1016/j.apcatb.2011.07.023

    Article  Google Scholar 

  49. Wu C, Dong L, Onwudili J, Williams PT, Huang J (2013) 1:1083-1091 Effect of Ni particle location within the mesoporous MCM-41 support for hydrogen production from the catalytic gasification of biomass. ACS Sustain Chem Eng 1:1083–1091. https://doi.org/10.1021/sc300133c

    Article  Google Scholar 

  50. Kruk M, Jaroniec M, Sayari A (1997) Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir. 13(23):6267–6273. https://doi.org/10.1021/la970776m

    Article  Google Scholar 

  51. Jaroniec M, Leonid SA (2006) Improvement of the Kruk-Jaroniec-Sayari method for pore size analysis of ordered silicas with cylindrical mesopores. Langmuir 22:6757–6760. https://doi.org/10.1021/la0609571

    Article  Google Scholar 

  52. Grudzien RM, Grabicka BE, Jaroniec M (2007) Applied Surface Science 253:5660-5665 Adsorption studies of thermal stability of SBA-16 mesoporous silicas. https://doi.org/10.1016/j.apsusc.2006.12.033

  53. Gobin OC, Wan Y, Zhao D, Kleitz F, Kaliaguine S (2007) Mesostructured silica SBA-16 with tailored intrawall porosity Part 1: synthesis and characterization. J Phys Chem C 111:3053–3058. https://doi.org/10.1021/jp0635765

    Article  Google Scholar 

  54. Hwang YK, Chang JS, Kwon YU, Park SE (2004) Microwave synthesis of cubic mesoporous silica SBA-16. Microporous Mesoporous Mater 68:21–27. https://doi.org/10.1016/j.micromeso.2003.12.004

    Article  Google Scholar 

  55. Velu S, Kapoor MP, Inagaki S, Suzuki K (2003) Vapor phase hydrogenation of phenol over palladium supported on mesoporous CeO2 and ZrO2. Appl Catal A Gen 245:317–331. https://doi.org/10.1016/S0926-860X(02)00655-5

    Article  Google Scholar 

  56. Itoh N, Xu WC (1993) Selective hydrogenation of phenol to cyclohexanone using palladium-based membranes as catalysts. Appl Catal A 107:83–100. https://doi.org/10.1016/0926-860X(93)85117-8

    Article  Google Scholar 

  57. Wenjing S, Yanyan H, Sitong L, Weikun L, Xiaodong Y, Weimin Y, Xingmao J (2020) Selective hydrodeoxygenation of lignin phenols to alcohols in the aqueous phase over a hierarchical Nb2O5-supported Ni catalyst. Green Chem 22:1662–1670. https://doi.org/10.1039/C9GC03842F

    Article  Google Scholar 

  58. Jiawei Z, Jinzhu C, Limin C (2014) Selective hydrogenation of phenol and related derivatives. Catal Sci Technol 4:3555–3569. https://doi.org/10.1039/C4CY00583J

    Article  Google Scholar 

  59. Gang F, Zhen L, Ping C, Hui L (2014) Influence of solvent on upgrading of phenolic compounds in pyrolysis bio-oil. RSC Adv 4:49924–49929. https://doi.org/10.1039/C4RA10891D

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madduluri Venkata Rao or K. S. Rama Rao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagu, A., Rao, M.V., Jagadeesh, M. et al. Efficient hydrogenation of biomass-derived phenol to cyclohexanol over 3D mesoporous silica-supported Ni catalysts in a continuous gas phase conditions. Biomass Conv. Bioref. 13, 2757–2768 (2023). https://doi.org/10.1007/s13399-021-01327-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01327-x

Keywords

Navigation