Skip to main content

Advertisement

Log in

Anaerobic digestion of dairy wastewater: effect of different parameters and co-digestion options—a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Increasing demand for dairy products resulted in the development of a large number of dairy industries, generating wastewater of high pollution potential. Main wastes generated include whey residues, milk fat and proteins, dairy sludge, and liquid effluents produced through different lines (cleaning, processing, and sanitary). Anaerobic digestion technology has got wide acceptance in recent times for treating highly organic effluents like dairy wastes due to its added benefits like energy recovery and high waste stabilisation with less energy requirement. This review paper is aimed at studying the effects of different key parameters (pH, carbon-to-nitrogen ratio, temperature, organic loading rate, solid retention time, hydraulic retention time, alkalinity, and mixing) on the successful operation of an anaerobic digester and thereby enhancing biogas production efficiency. Different waste streams generated in the dairy industry are identified along with their important characteristics. The process chemistry of anaerobic degradation of various effluents generated from the dairy industry is discussed. The need for pre-treatment technologies and the scope of co-digestion of dairy wastewater with other organic wastes are also covered. This critical review is intended to summarise the present knowledge on the application of anaerobic methods for treating dairy wastes most efficiently with proper control over operational parameters while maximising the biogas yield.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. OECD Publishing. (2019). OECD-FAO agricultural outlook 2019-2028. Organization for Economic Co-operation and Development OECD. https://doi.org/10.1787/19991142

  2. Chokshi K, Pancha I, Ghosh A, Mishra S (2016) Microalgal biomass generation by phycoremediation of dairy industry wastewater: an integrated approach towards sustainable biofuel production. Bioresour Technol 221:455–460. https://doi.org/10.1016/j.biortech.2016.09.070

    Article  Google Scholar 

  3. Britz TJ, Van Schalkwyk C, Hung YT (2006) Treatment of dairy processing wastewaters. In: Waste treatment in the food processing industry, CRC Press Taylor & Francis, Boca Raton. https://doi.org/10.1201/9781420037128.ch1

  4. Nadais MH, Capela I, Arroja L, Hung Y (2010) Anaerobic treatment of milk processing wastewater. In: Wang LK, Tay JH, Tay STLHY (eds) Handbook of environmental engineering, vol. 11. Environmental bioengineering. Humana Press, Springer, New York, pp 555–618

    Google Scholar 

  5. Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater : characterization and treatment. Sci Total Environ 446:385–396

    Article  Google Scholar 

  6. Monroy O, Vazquez F, Derramadero JC, Guyot JP (1995) Anaerobic-aerobic treatment of cheese wastewater with national technology in Mexico: the case of “El Sauz”. Water Sci Technol 32:149–156. https://doi.org/10.1016/0273-1223(96)00149-7

    Article  Google Scholar 

  7. Sarkar B, Chakrabarti PP, Vijaykumar A, Kale V (2006) Wastewater treatment in dairy industries - possibility of reuse. Desalination 195:141–152. https://doi.org/10.1016/j.desal.2005.11.015

    Article  Google Scholar 

  8. Ramasamy EV, Gajalakshmi S, Sanjeevi R et al (2004) Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors. Bioresour Technol 93(93):209–212. https://doi.org/10.1016/j.biortech.2003.11.001

    Article  Google Scholar 

  9. Kushwaha JP, Srivastava VC, Mall ID (2010) Bioresource technology treatment of dairy wastewater by commercial activated carbon and bagasse fly ash : Parametric, kinetic and equilibrium modelling, disposal studies. Bioresour Technol 101:3474–3483. https://doi.org/10.1016/j.biortech.2010.01.002

    Article  Google Scholar 

  10. Kasapgil B, Anderson GK, Ince O (1994) An investigation into the pre-treatment of dairy wastewater prior to aerobic biological treatment. Water Sci Technol 29:205–212. https://doi.org/10.2166/wst.1994.0481

    Article  Google Scholar 

  11. Thompson TG, Meyer GE (1998) Waste management issues for dairy processors. Filtration:1–10

  12. Leena AV, Balasundaram N, Meiaraj C (2016) Assessment of dairy waste treatment based on sludge volume index technique. Int J Civ Eng Technol 7:368–381

    Google Scholar 

  13. Demirel B, Yenigun O, Onay TT (2005) Anaerobic treatment of dairy wastewaters: a review. Process Biochem 40:2583–2595. https://doi.org/10.1016/j.procbio.2004.12.015

    Article  Google Scholar 

  14. Arvanitoyannis IS, Giakoundis A (2006) Current strategies for dairy waste management: A review. Crit Rev Food Sci Nutr 46:379–390. https://doi.org/10.1080/10408390591000695

    Article  Google Scholar 

  15. Karpati A, Bencze L, Borszeki J (1990) New process for physico-chemical pretreatment of dairy effluents with agricultural use of sludge produced. Water Sci Technol 22:93–100. https://doi.org/10.2166/wst.1990.0071

    Article  Google Scholar 

  16. Town JR, Dumonceaux TJ (2015) Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters. Bioenergy Biofuels. https://doi.org/10.1007/s00253-015-7058-3

  17. Sundar S, Dionisi D, Maarisetty D et al (2020) Biofuel production potential from wastewater in India by integrating anaerobic membrane reactor with algal photobioreactor. Biomass Bioenergy 133:105445. https://doi.org/10.1016/j.biombioe.2019.105445

    Article  Google Scholar 

  18. Miguel N, Coelho G, Droste RL, Kennedy KJ (2011) Evaluation of continuous mesophilic , thermophilic and temperature phased anaerobic digestion of microwaved activated sludge. Water Res 45:2822–2834. https://doi.org/10.1016/j.watres.2011.02.032

    Article  Google Scholar 

  19. Kolhe AS, Ingale SR, Bhole RV (2002) Effluent of dairy technology. Int Res J II:459–461

  20. (RAC/CP) Mediterranean Action Plan (2002) Prevention of pollution in the dairy industry. https://www.academia.edu/9685351/Regional_Activity_Centre_for_Cleaner_Production_RAC_CP_Mediterranean_Action_Plan_Dairy_industry. Accessed 03/10/2020

  21. Singh H, Bennett RJ (2002) Milk and milk processing. In: Robinson RK (ed) Dairy Microbiology Handbook. Wiley-Interscience, New York, pp 1–38

  22. Burke N, Zacharski KA, Southern M, Hogan P, Ryan MP, Adley CC (2018) The Dairy Industry: Process, Monitoring, Standards, and Quality. In Descriptive Food Science. IntechOpen. https://doi.org/10.5772/intechopen.80398

  23. Bird J (1993) Milk standardisation. Int J Dairy Technol 46(2):35–37. https://doi.org/10.1111/j.1471-0307.1993.tb00856.x

    Article  Google Scholar 

  24. Mehrotra R, Trivedi A (2016) Study on characterisation of Indian dairy wastewater. Int J Eng Appl Sci Technol 1:77–88

    Google Scholar 

  25. Thassitou PK, Arvanitoyannis IS (2001) Bioremediation : a novel approach to food waste management. Trends Food Sci Technol 12:185–196

    Article  Google Scholar 

  26. Slavov AK (2017) Dairy wastewaters–general characteristics and treatment possibilities–a review. Food Technol Biotech 55(1):14–28 https://doi.org/10.17113/2Fftb.55.01.17.4520

  27. Tikariha A, Sahu O (2014) Study of Characteristics and treatments of dairy industry waste water. J Appl Environ Microbiol 2:16–22. https://doi.org/10.12691/JAEM-2-1-4

    Article  Google Scholar 

  28. Rosenwinkel K-H, Austermann-Haun U, Meyer H (2004) Industrial Wastewater Sources and Treatment Strategies. In: Jördening H-J, Winter J (eds) Environ Biotechnol. https://doi.org/10.1002/3527604286.ch2

  29. Vidal G, Carvalho A, Mendez R, Lema JM (2000) Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresour Technol 74:231–239

    Article  Google Scholar 

  30. Birwal P, D G, Priyanka SPS (2017) Advanced technologies for dairy effluent treatment Abstract. J Food,Nutr Popul Heal 1:3–7

    Google Scholar 

  31. Ahmad T, Aadil RM, Ahmed H et al (2019) Treatment and utilization of dairy industrial waste: a review. Trends Food Sci Technol 88:361–372. https://doi.org/10.1016/j.tifs.2019.04.003

    Article  Google Scholar 

  32. Cristian O (2010) Characteristics of the untreated wastewater produced by food industry. An Univ Oradea Fasc Prot Med XV:709–714

    Google Scholar 

  33. Sinha S, Srivastava A, Mehrotra T, Singh R (2019) A review on the dairy industry wastewater characteristics, its impact on environment, and treatment possibilities. In Emerging Issues in Ecology and Environmental Science. Springer, Cham, pp. 73–84. https://doi.org/10.1007/978-3-319-99398-0_6

  34. Mohan SV, Babu VL, Sarma PN (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99:59–67. https://doi.org/10.1016/j.biortech.2006.12.004

    Article  Google Scholar 

  35. Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management : a review. J Environ Manag 110:48–68. https://doi.org/10.1016/j.jenvman.2012.05.018

    Article  Google Scholar 

  36. Saddoud A, Hassaı I, Sayadi S (2007) Anaerobic membrane reactor with phase separation for the treatment of cheese whey. Bioresour Technol 98:2102–2108. https://doi.org/10.1016/j.biortech.2006.08.013

    Article  Google Scholar 

  37. Watkins M, Nash D (2010) Dairy factory wastewaters , their use on land and possible environmental impacts – a mini review. Open Agric J 4(1). https://doi.org/10.2174/1874331501004010001

  38. Bylund G (2003) Dairy processing handbook. Serbian translation of handbook by Tetra Pak Processing System AB, Lund (Sweden)

  39. Wang S, Chandrasekhara Rao N, Qiu R, Moletta R (2009) Performance and kinetic evaluation of anaerobic moving bed biofilm reactor for treating milk permeate from dairy industry. Bioresour Technol 100:5641–5647. https://doi.org/10.1016/j.biortech.2009.06.028

    Article  Google Scholar 

  40. Kushwaha JP, Srivastava VC, Mall ID (2011) An overview of various technologies for the treatment of dairy wastewaters. Crit Rev Food Sci Nutr 51:442–452. https://doi.org/10.1080/10408391003663879

    Article  Google Scholar 

  41. Sengil A, Ozacar M (2006) Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes. J Hazard Mater 137:1197–1205. https://doi.org/10.1016/j.jhazmat.2006.04.009

    Article  Google Scholar 

  42. Qasim W, Mane AV (2013) Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resour Ind 4:1–12. https://doi.org/10.1016/j.wri.2013.09.005

    Article  Google Scholar 

  43. Tezcan Un U, Ozel E (2013) Electrocoagulation of yogurt industry wastewater and the production of ceramic pigments from the sludge. Sep Purif Technol 120:386–391. https://doi.org/10.1016/j.seppur.2013.09.031

    Article  Google Scholar 

  44. Karadag D, Koroglu OE, Ozkaya B, Cakmakci M (2015) A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem 50:262–271. https://doi.org/10.1016/j.procbio.2014.11.005

    Article  Google Scholar 

  45. Guillen-Jimenez E, Alvarez-mateos P, Romero-Guzman F, Pereda-Marin J (2000) Bio-mineralization of organic matter in dairy wastewater, as affected by pH. The evolution of ammonium and phosphates. Water Res 34:1215–1224

    Article  Google Scholar 

  46. Bezerra RA, Rodrigues JA, Ratusznei SM et al (2007) Whey treatment by AnSBBR with circulation : effects of organic loading , shock loads , and alkalinity supplementation. Appl Biochem Biotechnol 143:257–275. https://doi.org/10.1007/s12010-007-8030-1

    Article  Google Scholar 

  47. Farizoglu B, Uzuner S (2011) The investigation of dairy industry wastewater treatment in a biological high performance membrane system. Biochem Eng J 57:46–54. https://doi.org/10.1016/j.bej.2011.08.007

    Article  Google Scholar 

  48. Swati AP, Vaishali VA, Hussain MH (2016) Dairy wastewater-a case study. Int J Res Eng Technol:0–5

  49. Sivrioglu O, Yonar T (2015) Determination of the acute toxicities of physicochemical pretreatment and advanced oxidation processes applied to dairy effluents on activated sludge. J Dairy Sci 98:2337–2344. https://doi.org/10.3168/jds.2014-8278

    Article  Google Scholar 

  50. Amini M, Younesi H, Lorestani AAZ, Najafpour G (2013) Determination of optimum conditions for dairy wastewater treatment in UAASB reactor for removal of nutrients. Bioresour Technol 145:1–9. https://doi.org/10.1016/j.biortech.2013.01.111

    Article  Google Scholar 

  51. Arunadevi PS, Saravanaraja M (2020) Two phase upflow anaerobic sludge blanket ( UASB ) reactor on the reduction of chemical oxygen demand in dairy effluent. Asian J Adv Res 3:15–23

    Google Scholar 

  52. Gannoun H, Khelifi E, Bouallagui H et al (2008) Ecological clarification of cheese whey prior to anaerobic digestion in upflow anaerobic filter. Bioresour Technol 99:6105–6111. https://doi.org/10.1016/j.biortech.2007.12.037

    Article  Google Scholar 

  53. Hassan AN, Nelson BK (2012) Invited review : anaerobic fermentation of dairy food wastewater. J Dairy Sci 95:6188–6203. https://doi.org/10.3168/jds.2012-5732

    Article  Google Scholar 

  54. Traversi D, Bonetta S, Degan R et al (2013) Environmental advances due to the integration of food industries and anaerobic digestion for biogas production: perspectives of the italian milk and dairy product sector. Bioenergy Res 6:851–863. https://doi.org/10.1007/s12155-013-9341-4

    Article  Google Scholar 

  55. Dareioti MA, Kornaros M (2015) Anaerobic mesophilic co-digestion of ensiled sorghum , cheese whey and liquid cow manure in a two-stage CSTR system : effect of hydraulic retention time. Bioresour Technol 175:553–562. https://doi.org/10.1016/j.biortech.2014.10.102

    Article  Google Scholar 

  56. Danalewich JR, Papagiannis TG, Belyea RL et al (1998) Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Res 32:3555–3568. https://doi.org/10.1016/S0043-1354(98)00160-2

    Article  Google Scholar 

  57. Waliszewska H, Zborowska M, Waliszewska B et al (2016) Treatment of Dairy waste by anaerobic co-digestion with sewage sludge. Ecol Chem Eng 23:99–115. https://doi.org/10.1515/eces-2016-0007

    Article  Google Scholar 

  58. Hawkes FR, Donnelly T, Anderson GK (1995) Comparative performance of anaerobic digesters operating on ice-cream wastewater. Water Res 29:525–533. https://doi.org/10.1016/0043-1354(94)00163-2

    Article  Google Scholar 

  59. Demirel B, Orok M, Hot E et al (2013) Recovery of biogas as a source of renewable energy from ice-cream production residues and wastewater. Environ Technol 34:2099–2104. https://doi.org/10.1080/09593330.2013.774055

    Article  Google Scholar 

  60. Borja R, Banks CJ (1995) Response of an anaerobic fluidized bed reactor treating ice-cream wastewater to organic, hydraulic, temperature and pH shocks. J Biotechnol 39:251–259

  61. Koyuncu I, Turan M, Topacik D, Ates A (2000) Application of low pressure nanofiltration membranes for the recovery and reuse of dairy industry effluents. Water Sci Technol 41:213–221. https://doi.org/10.2166/wst.2000.0031

    Article  Google Scholar 

  62. Erguder TH, Tezel U, Guven E, Demirer GN (2001) Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Manag 21:643–650

    Article  Google Scholar 

  63. Ozmihci S, Kargi ÆF (2007) Continuous ethanol fermentation of cheese whey powder solution: effects of hydraulic residence time. Bioprocess Biosyst Eng 30:79–86. https://doi.org/10.1007/s00449-006-0101-0

    Article  Google Scholar 

  64. Poopathi S, Abidha S (2012) The use of clarified butter sediment waste from dairy industries for the production of mosquitocidal bacteria. Int J Dairy Technol 65:152–157. https://doi.org/10.1111/j.1471-0307.2011.00745.x

    Article  Google Scholar 

  65. Neal C, Jarvie HP (2005) Agriculture, community, river eutrophication and the water framework directive. Hydrol Process 19:1895–1901. https://doi.org/10.1002/hyp.5903

  66. Russell JM (1997) Treatment of a milkpowder/butter wastewater using the AAO activated sludge configuration. Water Sci Technol 1223:79–86. https://doi.org/10.1016/S0273-1223(97)00644-6

    Article  Google Scholar 

  67. Neczaj E, Kacprzak M, Kamizela T, Lach J, Okoniewska E (2008) Sequencing batch reactor system for the co-treatment of landfill leachate and dairy wastewater. Desalination 222(1–3):404–409. https://doi.org/10.1016/j.desal.2007.01.133

  68. Calli B, Yukselen MA (2002) Anaerobic treatment by a hybrid reactor. Environ Eng Sci 19(3):143–150. https://doi.org/10.1089/109287502760079160

  69. Goli A, Shamiri A, Khosroyar S et al (2019) A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. J Environ Treat Tech 6:113–141

    Google Scholar 

  70. Kolev Slavov A (2017) General characteristics and treatment possibilities of dairy wastewater – a review. Food Technol Biotechnol 55(1):14–28. https://doi.org/10.17113/2Fftb.55.01.17.4520

  71. Mendes AA, Pereira EB, Furigo A Jr (2010) Anaerobic biodegradability of dairy wastewater pretreated with porcine pancreas lipase. Braz Arch Biol Technol 53:1279–1284

    Article  Google Scholar 

  72. Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953. https://doi.org/10.1016/j.biortech.2008.02.061

    Article  Google Scholar 

  73. Vasudevan Y, Govindharaj D, Udayakumar GP, Ganesan A (2019) A review on the production of biogas from biological sources. In: Sivasubramanian V, Pugazhendhi A, Moorthy IG (eds) Springer proceedings in energy

  74. Zehnder AJB, Gujer W (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167

    Article  Google Scholar 

  75. Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energ Rev 15:821–826. https://doi.org/10.1016/j.rser.2010.07.042

    Article  Google Scholar 

  76. Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrog Energy 27:1339–1347. https://doi.org/10.1016/S0360-3199(02)00090-3

    Article  Google Scholar 

  77. Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28. https://doi.org/10.1016/S0360-3199(00)00058-6

    Article  Google Scholar 

  78. van Lier JB, Mahmoud N, Zeeman G (2012) Anaerobic wastewater treatment. In: Biological wastewater treatment: principles, modeling and design. pp 421–427

  79. Ostrem KM (2004) Greening waste: anaerobic digestion for treating the organic fraction of municipal solid waste.In: The Earth Engineering Center and the Henry Krumb School of Mines,Thesis,pp 1-59

  80. Belitz H, Grosch W, Schieberle P (2009) Sugars, sugar alcohols and honey. In: Food chemistry. Berlin Heidelberg, Springer-Verlag, pp 498–545. https://doi.org/10.1007/978-3-540-69934-7_11

  81. Belitz HD, Grosch W, Schieberle P (2009) Milk and dairy products. In: Food chemistry. Berlin Heidelberg: Springer-Verlag, pp 498–545

  82. Parodi P (2004) Milk fat in human nutrition. Aust J Dairy Technol 59(1)

  83. Deublein D, Steinhauser A (2011) Biochemical reactions. In: Biogas from waste and renewable resources., 2nd Ed. Weinheim: Wiley-VCH Verlag GmbH & Co.KGaA, pp 87–91

  84. Kavitha RV, Kumar S, Suresh R, Krishnamurthy V (2013) Performance evaluation and biological treatment of dairy wastewater treatment plant by upflow anaeroic sludge blanket reactor. Int J Chem Petrochem Technol 3(1)

  85. Ince O (2015) Potential energy production from anaerobic digestion of dairy wastewater. J Environ Sci Heal 33:37–41. https://doi.org/10.1080/10934529809376784

    Article  Google Scholar 

  86. Kikkeri SR, Viraraghavan T (2008) Start-up of anaerobic filters treating dairy wastewater : effect of temperature and shock load. J Environ Sci Heal 26:287–300. https://doi.org/10.1080/10934529109375634

    Article  Google Scholar 

  87. Alves M, Pereira A, Mota M et al (1998) Staged and non-staged anaerobic filters: microbial activity segregation, hydrodynamic behaviour and performance. J Chem Technol Biotechnol 73:1–10. https://doi.org/10.1002/(SICI)1097-4660(1998100)73:2%3C99::AID-JCTB934%3E3.0.CO;2-O

    Article  Google Scholar 

  88. Omil F, Garrido JM, Arrojo B, Mendez R (2003) Anaerobic filter reactor performance for the treatment of complex dairy wastewater at industrial scale. Water Res 37:4099–4108. https://doi.org/10.1016/S0043-1354(03)00346-4

    Article  Google Scholar 

  89. Deshannavar UB, Basavaraj RK, Naik NM (2012) High rate digestion of dairy industry effluent by upflow anaerobic fixed-bed reactor. J Chem Pharm Res 4:2895–2899

    Google Scholar 

  90. Kongsil P, Irvine JL, Yang PY (2010) Integrating an anaerobic Bio-nest and an aerobic EMMC process as pretreatment of dairy wastewater for reuse : a pilot plant study. Clean Techn Environ Policy 12:301–311. https://doi.org/10.1007/s10098-009-0211-x

    Article  Google Scholar 

  91. Banu JR, Anandan S, Kaliappan S, Yeom IT (2008) Treatment of dairy wastewater using anaerobic and solar photocatalytic methods. Sol Energy 82(9):812–819. https://doi.org/10.1016/J.SOLENER.2008.02.015

  92. Matsumoto EM, Osako MS, Pinho SC et al (2012) Treatment of wastewater from dairy plants using anaerobic sequencing batch reactor ( ASBR ) following by aerobic sequencing batch reactor (SBR) aiming the removal of organic matter and nitrification. Water Pract Technol 7. https://doi.org/10.2166/wpt.2012.048

  93. Rajagopal R, Torrijos M, Kumar P, Mehrotra I (2013) Substrate removal kinetics in high-rate up flow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters. J Environ Manag 116:101–106. https://doi.org/10.1016/j.jenvman.2012.11.032

  94. Dębowski M, Zieliński M, Krzemieniewski M (2014) Effect of magneto-active filling on the effectiveness of methane fermentation of dairy wastewaters. Int J Green Energy 5075. https://doi.org/10.1080/15435075.2014.909362

  95. Charalambous P, Shin J, Gu S, Vyrides I (2020) Anaerobic digestion of industrial dairy wastewater and cheese whey : performance of internal circulation bioreactor and laboratory batch test at pH 5-6. Renew Energy 147:1–10. https://doi.org/10.1016/j.renene.2019.08.091

    Article  Google Scholar 

  96. Zieli M, Zieli M, Marcin D (2018) Organic compounds and phosphorus removal from dairy wastewater by biofilm on iron-containing supports. J Environ Eng 144:1–7. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001309

    Article  Google Scholar 

  97. Jürgensen L, Augustine E, Born J, Holm-nielsen JB (2018) A combination anaerobic digestion scheme for biogas production from dairy effluent-CSTR and ABR, and biogas upgrading. Biomass Bioenergy 111:1–7. https://doi.org/10.1016/j.biombioe.2017.04.007

    Article  Google Scholar 

  98. Gutiérrez S, Ferrari A, Benítez A, Hermida R, Canetti R (2005) Carbon and nitrogen removal from dairy wastewater in a laboratory sequential batch reactor system. In: Proceedings of ENPROMER 2005, Río de Janeiro, Brasil, pp 1–10

  99. Anukam A, Mohammadi A, Naqvi M, Granström K (2019) A review of the chemistry of anaerobic digestion : methods of accelerating and optimizing process efficiency. Processes 7:1–19. https://doi.org/10.3390/pr7080504

    Article  Google Scholar 

  100. Bharati M, Shete S, Shinkar NP (2017) Anaerobic Digestion of dairy industry waste water-biogas evolution-a review. Int J Appl Environ Sci 12:1117–1130

    Google Scholar 

  101. Arikan O (2015) Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure. In: Waste to worth: spreading science and solutions. Seattle, WA. March 31-April 3

  102. Bohn I, Björnsson L, Mattiasson B (2007) Effect of temperature decrease on the microbial population and process performance of a mesophilic anaerobic bioreactor. Environ Technol 28:943–952. https://doi.org/10.1080/09593332808618843

    Article  Google Scholar 

  103. Zupancic RM (2003) Heat and energy requirements in thermophilic anaerobic sludge digestion ˇ ic. Renew Energy 28:2255–2267. https://doi.org/10.1016/S0960-1481(03)00134-4

    Article  Google Scholar 

  104. Pandey PK, Soupir ML (2012) Impacts of Temperatures on biogas production in dairy manure anaerobic digestion. Int J Eng Technol 4(5):629. https://doi.org/10.7763/IJET.2012.V4.448

  105. Desai M, Patel V, Madamwar D (1994) Effect of temperature and retention time on biomethanation of cheese whey-poultry waste-cattle dung. Environ Pollut 83:311–315

    Article  Google Scholar 

  106. Sung S, Santha H (2003) Performance of temperature-phased anaerobic digestion ( TPAD ) system treating dairy cattle wastes. Water Res 37:1628–1636

    Article  Google Scholar 

  107. Collins G, Mchugh S, Connaughton S (2007) New low-temperature applications of anaerobic wastewater treatment. J Environ Sci Heal 41:37–41. https://doi.org/10.1080/10934520600614504

    Article  Google Scholar 

  108. Bialek K, Cysneiros D, Flaherty VO (2013) Low-temperature (10°C ) anaerobic digestion of dilute dairy wastewater in an EGSB bioreactor : microbial community structure, population dynamics, and kinetics of methanogenic populations. Archaea 2013:

  109. Mcateer PG, Christine A, Thorn C et al (2020) Bioresource technology reactor configuration influences microbial community structure during high-rate, low-temperature anaerobic treatment of dairy wastewater. Bioresour Technol 307:123221. https://doi.org/10.1016/j.biortech.2020.123221

    Article  Google Scholar 

  110. Hariklia Gavala, Irini Angelidaki, Birgitte K Ahring (2003) Kinetics and modeling of anaerobic digestion process. In: Biomethanation. pp 57–93

  111. Alves MM, Pereira MA, Sousa DZ et al (2009) Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microb Biotechnol 2:538–550. https://doi.org/10.1111/j.1751-7915.2009.00100.x

    Article  Google Scholar 

  112. Pavlostathis SG, Gomez EG (2009) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21:37–41

    Google Scholar 

  113. Tauseef SM, Abbasi T, Abbasi SA (2013) Energy recovery from wastewaters with high-rate anaerobic digesters. Renew Sust Energ Rev 19:704–741. https://doi.org/10.1016/j.rser.2012.11.056

    Article  Google Scholar 

  114. Cicek N, Winnen H, Suidan MT, Wrenn BE, Urbain VMJ (1996) Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds. Water Sci Technol 34:197–203. https://doi.org/10.1016/S0273-1223(96)00805-0

    Article  Google Scholar 

  115. Li, A.; Kothari, D.; Corrado J. (1982) Application of Membrane anaerobic reactor system for the treatment of industrial wastewaters. In: The first international conference on fixed film biological processes. Kings Island, OH, University of Pittsburgh, pp 1521–1541

  116. Dereli RK, Van Zee FP, Heffernan B et al (2013) Effect of sludge retention time on the biological performance of anaerobic membrane bioreactors treating corn-to-ethanol thin stillage with high lipid content. Water Res 49:453–464. https://doi.org/10.1016/j.watres.2013.10.035

    Article  Google Scholar 

  117. Huang Z, Ong SL, Ng HY (2013) Performance of submerged anaerobic membrane bioreactor at different SRTs for domestic wastewater treatment. J Biotechnol 164:82–90. https://doi.org/10.1016/j.jbiotec.2013.01.001

    Article  Google Scholar 

  118. Szabo-corbacho MA, Pacheco-ruiz S, Míguez D et al (2019) Impact of solids retention time on the biological performance of an AnMBR treating lipid-rich synthetic dairy wastewater. Environ Technol:1:1–1:112. https://doi.org/10.1080/09593330.2019.1639829

  119. Lutze R, Engelhart M (2020) Comparison of CSTR and AnMBR for anaerobic digestion of WAS and lipid-rich flotation sludge from the dairy industry. Water Resour Ind 23:100122. https://doi.org/10.1016/j.wri.2019.100122

    Article  Google Scholar 

  120. Demirer GN, Chen S (2004) Effect of retention time and organic loading rate on anaerobic acidification and biogasification of dairy manure. J Chem Technol Biotechnol 79:1381–1387. https://doi.org/10.1002/jctb.1138

    Article  Google Scholar 

  121. Liew YX, Chan YJ, Manickam S, et al (2019) Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: a review. Sci. Total Environ 713

  122. Sz G, Portoro P, Bordas D, Kalman M (2008) Comparison of the effectivities of two-phase and single-phase anaerobic sequencing batch reactors during dairy wastewater treatment. Renew Energy 33:960–965. https://doi.org/10.1016/j.renene.2007.06.006

    Article  Google Scholar 

  123. Cotta-Navarro CB, Carillo-Reyes J, Vazquez GD (2011) Continuous hydrogen and methane production in a two-stage cheese whey fermentation system. Water Sci Technol 64:367–375. https://doi.org/10.2166/wst.2011.631

    Article  Google Scholar 

  124. Kundu K, Bergmann I, Hahnke S et al (2013) Carbon source - a strong determinant of microbial community structure and performance of an anaerobic reactor. J Biotechnol 168:1–9. https://doi.org/10.1016/j.jbiotec.2013.08.023

    Article  Google Scholar 

  125. Demirel B, Yenigun O (2004) Anaerobic acidogenesis of dairy wastewater : the effects of variations in hydraulic retention with no pH control. J Chem Technol Biotechnol 79(7):755–760. https://doi.org/10.1002/JCTB.1052

  126. Fang HHP (2000) Effect of HRT on mesophilic acidogenesis of dairy wastewater. J Environ Eng 126:1145–1148

    Article  Google Scholar 

  127. Anderson GK, Yang G (1992) pH control in anaerobic treatment of industrial wastewater. J Environ Eng 118(4):551–567. https://doi.org/10.1061/(ASCE)0733-9372(1992)118:4(551)

  128. Diamantis VI, Kapagiannidis AG, Ntougias S et al (2014) Two-stage CSTR – UASB digestion enables superior and alkali addition-free cheese whey treatment. Biochem Eng J 84:45–52. https://doi.org/10.1016/j.bej.2014.01.001

    Article  Google Scholar 

  129. Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G (2008) Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res 47(15):5227–5233. https://doi.org/10.1021/ie071622x

  130. Gavala HN, Kopsinis H, Skiadas IV et al (1999) Treatment of dairy wastewater using an upflow anaerobic sludge blanket reactor. J Agric Eng Res 73:59–63

    Article  Google Scholar 

  131. Debowski M, Zielinski M (2020) Evaluation of anaerobic digestion of dairy wastewater in an innovative multi-section horizontal flow reactor. Energies 13:2392

    Article  Google Scholar 

  132. Ozturk A, Aygun A, Nas B (2019) Application of sequencing batch biofilm reactor ( SBBR ) in dairy wastewater treatment. Korean J Chem Eng 36:248–254. https://doi.org/10.1007/s11814-018-0198-2

    Article  Google Scholar 

  133. Mohan SV, Babu VL, Sarma PN (2007) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor ( AnSBR ): Effect of organic loading rate. Enzym Microb Technol 41:506–515. https://doi.org/10.1016/j.enzmictec.2007.04.007

    Article  Google Scholar 

  134. Davila-vazquez G, Cota-navarro CB, Rosales-colunga LM et al (2010) Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate. Int J Hydrog Energy 34:4296–4304. https://doi.org/10.1016/j.ijhydene.2009.02.063

    Article  Google Scholar 

  135. Kaparaju P, Buendia I, Ellegaard L, Angelidakia I (2008) Effects of mixing on methane production during thermophilic anaerobic digestion of manure : lab-scale and pilot-scale studies. Bioresour Technol 99:4919–4928. https://doi.org/10.1016/j.biortech.2007.09.015

    Article  Google Scholar 

  136. Kangle KM, Kore SV, Kulkarni GS (2014) Recent trends in anaerobic codigestion : a review. Univers J Environ Res Technol 2:210–219

    Google Scholar 

  137. Parkin GF, Owen WF (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng (United States) 112:867–920. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(867)

    Article  Google Scholar 

  138. Karim K, Hoffmann R, Klasson KT, Al-dahhan MH (2005) Anaerobic digestion of animal waste : effect of mode of mixing. Water Res 39:3597–3606. https://doi.org/10.1016/j.watres.2005.06.019

    Article  Google Scholar 

  139. Marchaim U, Krause C (1993) Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresour Technol 43:195–203

    Article  Google Scholar 

  140. Yen H, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134. https://doi.org/10.1016/j.biortech.2005.11.010

    Article  Google Scholar 

  141. Angelidaki I (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res 28:727–731

    Article  Google Scholar 

  142. Gil A, Siles JA, Serrano A et al (2019) Effect of variation in the C/[N+P] ratio on anaerobic digestion. Environ Prog Sustain Energy 38:228–236. https://doi.org/10.1002/ep.12922

    Article  Google Scholar 

  143. Demirel B, Yenigun O (2006) Changes in microbial ecology in an anaerobic reactor. Bioresour Technol 97:1201–1208. https://doi.org/10.1016/j.biortech.2005.05.009

    Article  Google Scholar 

  144. Chen S, Zhang J, Wang X (2015) Effects of alkalinity sources on the stability of anaerobic digestion from food waste. Waste Manag Res 33:1033–1040. https://doi.org/10.1177/0734242X15602965

    Article  Google Scholar 

  145. Gutirrez JLR (1991) Anaerobic treatment of cheese-production wastewater using a UASB reactor. Bioresour Technol 37:271–276

    Article  Google Scholar 

  146. Cheah Y, Vidal-antich C, Dosta J (2019) Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Adv Prospect F Waste Manag 26

  147. Ghaly AE, Scotia N (1991) Amelioration of methane yield in cheese whey fermentation by controlling the pH of the methanogenic stage. Appl Biochem Biotechnol 27

  148. Pereira ÂL, Alves MM, Vieira JAM (2001) Effect of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part I: Biofilm growth and activity. Water Res 35

  149. Ying GG, Williams B, Kookana R (2002) Environmental fate of alkylphenols and alkylphenol ethoxylates - a review. Environ Int 28:215–226. https://doi.org/10.1016/S0160-4120(02)00017-X

    Article  Google Scholar 

  150. Baral SS, Rao PV, Surendran G (2018) Pretreatment of organic composite waste mixtures for enhanced biomethanantion. Energy Sources, Part A Recover Util Environ Eff 40:1380–1387. https://doi.org/10.1080/15567036.2018.1476932

    Article  Google Scholar 

  151. Mata-Alvarez J, Dosta J, Romero-Güiza MS et al (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sust Energ Rev 36:412–427. https://doi.org/10.1016/j.rser.2014.04.039

    Article  Google Scholar 

  152. Domingues RF, Sanches T, Silva GS et al (2015) Effect of enzymatic pretreatment on the anaerobic digestion of milk fat for biogas production. Food Res Int 73:26–30. https://doi.org/10.1016/j.foodres.2015.03.027

    Article  Google Scholar 

  153. Mendes AA, Pereira EB, de Castro HF (2006) Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochem Eng J 32:185–190. https://doi.org/10.1016/j.bej.2006.09.021

    Article  Google Scholar 

  154. Montingelli ME, Benyounis KY, Quilty B et al (2017) Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production. Energy 118:1079–1089. https://doi.org/10.1016/j.energy.2016.10.132

    Article  Google Scholar 

  155. Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101:8713–8717. https://doi.org/10.1016/j.biortech.2010.06.108

    Article  Google Scholar 

  156. Zhong W, Zhang Z, Luo Y et al (2011) Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour Technol 102:11177–11182. https://doi.org/10.1016/j.biortech.2011.09.077

    Article  Google Scholar 

  157. Menardo S, Airoldi G, Balsari P (2012) The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresour Technol 104:708–714. https://doi.org/10.1016/j.biortech.2011.10.061

    Article  Google Scholar 

  158. Carrère H, Dumas C, Battimelli A et al (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15. https://doi.org/10.1016/j.jhazmat.2010.06.129

    Article  Google Scholar 

  159. Park B, Ahn JH, Kim J, Hwang S (2004) Use of microwave pretreatment for enhanced anaerobiosis of secondary slugde. Water Sci Technol 50(9). https://doi.org/10.2166/wst.2004.0523

  160. Feng X, Lei H, Deng J et al (2009) Physical and chemical characteristics of waste activated sludge treated ultrasonically. Chem Eng Process Process Intensif 48:187–194. https://doi.org/10.1016/j.cep.2008.03.012

    Article  Google Scholar 

  161. Bougrier C, Carrère H, Delgenès JP (2005) Solubilisation of waste-activated sludge by ultrasonic treatment. Chem Eng J 106:163–169. https://doi.org/10.1016/j.cej.2004.11.013

    Article  Google Scholar 

  162. Palmowski LM, Müller JA (2003) Anaerobic degradation of organic materials - signifance of the substrate surface area. Water Sci Technol 47:231–238. https://doi.org/10.2166/wst.2003.0651

    Article  Google Scholar 

  163. Hogan F, Mormede S, Clark P, Crane M (2004) Ultrasonic sludge treatment for enhanced anaerobic digestion. Water Sci Technol 50:25–32. https://doi.org/10.2166/wst.2004.0526

    Article  Google Scholar 

  164. Palmowski L, Simons L, Brook R (2006) Ultrasonic treatment to improve anaerobic digestibility of dairy waste streams. Water Sci Technol 53:281–288. https://doi.org/10.2166/wst.2006.259

    Article  Google Scholar 

  165. Jafari S, Salehiziri M, Foroozesh E et al (2020) An evaluation of lysozyme enzyme and thermal pretreatments on dairy sludge digestion and gas production. Water Sci Technol 81:1052–1062. https://doi.org/10.2166/wst.2020.198

    Article  Google Scholar 

  166. Adulkar TV, Rathod VK (2015) Pre-treatment of high fat content dairy wastewater using different commercial lipases. Desalin Water Treat 53:2450–2455. https://doi.org/10.1080/19443994.2013.871582

    Article  Google Scholar 

  167. Uma Rani R, Adish Kumar S, Kaliappan S et al (2014) Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment. Ultrason Sonochem 21:1065–1074. https://doi.org/10.1016/j.ultsonch.2013.11.007

    Article  Google Scholar 

  168. Hagos K, Zong J, Li D et al (2016) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sust Energ Rev 76:1485–1496. https://doi.org/10.1016/j.rser.2016.11.184

  169. Raheem A, Yusri M, Shakoor R (2016) Bioenergy from anaerobic digestion in Pakistan : potential , development and prospects. Renew Sust Energ Rev 59:264–275. https://doi.org/10.1016/j.rser.2016.01.010

    Article  Google Scholar 

  170. Miao H, Wang S, Zhao M et al (2014) Codigestion of Taihu blue algae with swine manure for biogas production. Energy Convers Manag 77:643–649. https://doi.org/10.1016/j.enconman.2013.10.025

    Article  Google Scholar 

  171. Wang X, Yang G, Li F et al (2013) Evaluation of two statistical methods for optimizing the feeding composition in anaerobic co-digestion : mixture design and central composite design. Bioresour Technol 131:172–178. https://doi.org/10.1016/j.biortech.2012.12.174

    Article  Google Scholar 

  172. Akyol C, Ozbayram EG, Ince O et al (2016) Anaerobic co-digestion of cow manure and barley: effect of cow manure to barley ratio on methane production and digestion stability. Environ Prog Sustain Energy 35:589–595. https://doi.org/10.1002/ep.12250

    Article  Google Scholar 

  173. Zeeman G, Wiegant WM (1985) The influence of the total-ammonia concentration on the thermophilic digestion of cow manure. Agric Wastes 14:19–35

    Article  Google Scholar 

  174. Huttunen S, Rintala JA (2007) Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production : effect of crop to manure ratio. Resour Conserv Recycl 51:591–609. https://doi.org/10.1016/j.resconrec.2006.11.004

    Article  Google Scholar 

  175. Angelidaki I, Ellegaard I (2003) Codigestion of manure and organic wastes in centralized biogas plants. Status Futur Trends 109:95–105

    Google Scholar 

  176. Bertin L, Grilli S, Spagni A, Fava F (2013) Innovative two-stage anaerobic process for effective codigestion of cheese whey and cattle manure. Bioresour Technol 128:779–783. https://doi.org/10.1016/j.biortech.2012.10.118

    Article  Google Scholar 

  177. Comino E, Riggio VA, Rosso M (2012) Biogas production by anaerobic co-digestion of cattle slurry and cheese whey. Bioresour Technol 114:46–53. https://doi.org/10.1016/j.biortech.2012.02.090

    Article  Google Scholar 

  178. Kavacik B, Topaloglu B (2010) Biogas production from co-digestion of a mixture of cheese whey and dairy manure. Biomass Bioenergy 34:1321–1329. https://doi.org/10.1016/j.biombioe.2010.04.006

    Article  Google Scholar 

  179. Hartmann H, Angelidaki I, Ahring BK (2002) Co-digestion of the organic fraction of municipal waste with other waste types. In: Mata-Alvarez.J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, pp 181–200

  180. Martínez EJ, Gil MV, Fernandez C et al (2016) Anaerobic codigestion of sludge : addition of butcher’s fat waste as a cosubstrate for increasing biogas production. PLoS One 11:1–13. https://doi.org/10.1371/journal.pone.0153139

    Article  Google Scholar 

  181. Zhou P, Elbeshbishy E, Nakhla G (2013) Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids. Bioresour Technol 130:710–718. https://doi.org/10.1016/j.biortech.2012.12.069

    Article  Google Scholar 

  182. Adghim M, Abdallah M, Saad S et al (2020) Assessment of the biochemical methane potential of mono- and co-digested dairy farm wastes. Waste Manag Res 38:88–99. https://doi.org/10.1177/0734242X19871999

    Article  Google Scholar 

  183. Chou YC, Su J-J (2019) Biogas production by anaerobic co-digestion of dairy wastewater with the crude glycerol from slaughterhouse sludge cake transesterification. Animals 9:618. https://doi.org/10.3390/ani9090618

    Article  Google Scholar 

  184. Papirio S, Matassa S, Pirozzi F, Esposito G (2020) Anaerobic co-digestion of cheese whey and industrial hemp residues opens new perspectives for the valorization of agri-food waste. Energies 13:2820

    Article  Google Scholar 

  185. Sembera C, Macintosh C, Astals S, Koch K (2019) Benefits and drawbacks of food and dairy waste co-digestion at a high organic loading rate: a Moosburg WWTP case study. Waste Manag 95:217–226. https://doi.org/10.1016/j.wasman.2019.06.008

    Article  Google Scholar 

  186. Vivekanand V, Mulat DG, Eijsink VGH, Horn SJ (2017) Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.09.169

  187. Taylor P, Powell N, Broughton A, et al (2013) Effect of whey storage on biogas produced by co- digestion of sewage sludge and whey. Environ T 37–41. doi:https://doi.org/10.1080/09593330.2013.788042

  188. Athanasoulia E, Melidis P, Aivasidis A (2014) Co-digestion of sewage sludge and crude glycerol from biodiesel production. Renew Energy 62:73–78. https://doi.org/10.1016/j.renene.2013.06.040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Venkateswara Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bella, K., Rao, P.V. Anaerobic digestion of dairy wastewater: effect of different parameters and co-digestion options—a review. Biomass Conv. Bioref. 13, 2527–2552 (2023). https://doi.org/10.1007/s13399-020-01247-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01247-2

Keywords

Navigation